留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于网络药理学的健脾解毒方抗结直肠癌的作用机制研究

仇雅岚 高静东 刘敏 张蕾 宋卿

仇雅岚, 高静东, 刘敏, 张蕾, 宋卿. 基于网络药理学的健脾解毒方抗结直肠癌的作用机制研究[J]. 南京中医药大学学报, 2022, 38(2): 136-146. doi: 10.14148/j.issn.1672-0482.2022.0136
引用本文: 仇雅岚, 高静东, 刘敏, 张蕾, 宋卿. 基于网络药理学的健脾解毒方抗结直肠癌的作用机制研究[J]. 南京中医药大学学报, 2022, 38(2): 136-146. doi: 10.14148/j.issn.1672-0482.2022.0136
QIU Ya-lan, GAO Jing-dong, LIU Min, ZHANG Lei, SONG Qing. Study on the Anti-Colorectal Cancer Mechanism of Jianpi Jiedu Decoction Based on Network Pharmacology[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(2): 136-146. doi: 10.14148/j.issn.1672-0482.2022.0136
Citation: QIU Ya-lan, GAO Jing-dong, LIU Min, ZHANG Lei, SONG Qing. Study on the Anti-Colorectal Cancer Mechanism of Jianpi Jiedu Decoction Based on Network Pharmacology[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(2): 136-146. doi: 10.14148/j.issn.1672-0482.2022.0136

基于网络药理学的健脾解毒方抗结直肠癌的作用机制研究

doi: 10.14148/j.issn.1672-0482.2022.0136
基金项目: 

国家自然科学基金面上项目 82004136

详细信息
    作者简介:

    仇雅岚, 女,硕士研究生, E-mail: qiu_yalan@163.com

    通讯作者:

    宋卿, 男,副主任中医师, 主要从事中西医结合防治肿瘤的研究,E-mail: songqing12016084@163.com

  • 中图分类号: R285.5

Study on the Anti-Colorectal Cancer Mechanism of Jianpi Jiedu Decoction Based on Network Pharmacology

  • 摘要:   目的  基于网络药理学和分子对接研究健脾解毒方的抗结直肠癌作用机制。  方法  运用TCMSP、TCMID、ETCM数据库预测健脾解毒方有效成分及其作用靶点, 利用GeneCards数据库检索肿瘤相关靶点, 并进行药物-疾病靶点匹配。将共同靶点导入Cytoscape 3.7.2构建PPI网络并进行网络拓扑分析筛选关键靶点。通过R 3.6.3软件对共同靶点进行GO富集分析及KEGG通路富集分析。利用AutoDock平台进行分子对接, 预测有效成分与关键靶点的结合度, 并对关键靶点进行实验验证。  结果  共筛选出健脾解毒方有效成分24种, 肿瘤相关靶点86个, 其中关键靶点为PTGS2、HSP90AA1、PRSS1, 且与主要有效成分槲皮素、山柰酚均具有良好的结合活性。GO富集分析和KEGG通路富集分析提示健脾解毒方可能通过PI3K-Akt信号通路、MAPK信号通路发挥抗结直肠癌作用。实验验证发现健脾解毒方能够下调PTGS2、p38MAPK蛋白及mRNA表达, 而沉默PTGS2基因后健脾解毒方对下游基因p38MAPK的表达无明显调控作用, 且对结肠癌细胞转移能力无明显影响。  结论  健脾解毒方能够抑制结肠癌转移, 其机制与PTGS2介导的p38MAPK信号通路相关。

     

  • 图  1  健脾解毒方的有效成分-抗肿瘤靶点网络

    绿色菱形.白花蛇舌草有效成分; 紫色菱形.白术有效成分; 黄色菱形.黄芪有效成分; 棕色菱形.山慈姑有效成分; 红色菱形.共有有效成分; 蓝色圆形.抗肿瘤靶点

    Figure  1.  Interaction network of effective ingredients of JPJDD-antitumor targets

    图  2  关键靶点PPI网络

    Figure  2.  PPI network of the key targets

    图  3  GO富集分析细胞成分柱状图

    Figure  3.  CC barplot of GO enrichment

    图  4  GO富集分析分子功能柱状图

    Figure  4.  MF barplot of GO enrichment

    图  5  GO富集分析生物过程柱状图

    Figure  5.  BP barplot of GO enrichment

    图  6  KEGG通路富集分析气泡图

    Figure  6.  KEGG bubble

    图  7  健脾解毒方主要有效成分与关键靶基因分子对接图

    Figure  7.  Molecular docking diagram of the active ingredients of JPJDD and the key targets

    图  8  不同浓度健脾解毒方对HCT-116细胞增殖的影响

    Figure  8.  The cell proliferation of HCT-116 with different doses of JPJDD

    图  9  不同浓度健脾解毒方对HCT-116细胞中PTGS2和p38MAPK蛋白表达的影响

    注:与对照组比较, **P < 0.01, ***P < 0.001。

    Figure  9.  The protein expressions of PTGS2 and p38MAPK in HCT-116 with different doses of JPJDD

    图  10  不同浓度健脾解毒方对HCT-116细胞中PTGS2和p38MAPK mRNA表达的影响

    注:与对照组相比, **P < 0.01, ***P < 0.001。

    Figure  10.  The mRNA expressions of PTGS2 and p38MAPK in HCT-116 with different doses of JPJDD

    图  11  各组细胞迁移情况比较

    注:A.结晶紫染色观察各组细胞迁移情况; B.各组迁移细胞数比较。与对照组比较, ***P < 0.001。

    Figure  11.  Cell migration in each group

    图  12  各组细胞p38MAPK mRNA和蛋白表达

    注:与对照组比较, **P < 0.01, ***P < 0.001。

    Figure  12.  The mRNA and protein expressions of p38MAPK in each group

    表  1  健脾解毒方的有效化学成分

    Table  1.   Active ingredients of Jianpi Jiedu Decoction (JPJDD)

    来源 有效成分 OB DL 节点度
    黄芪 Mairin 55.38 0.78 1
    Jaranol 50.83 0.29 1
    Hederagenin 36.91 0.75 4
    Isorhamnetin 49.60 0.31 14
    3, 9-di-O-Methylnissolin 53.74 0.48 4
    7-O-Methylisomucronulatol 74.69 0.30 13
    9, 10-Dimethoxypterocarpan-3-O-β-D-glucoside 36.74 0.92 1
    (6aR, 11aR)-9, 10-Dimethoxy-6a, 11a-dihydro-6H-benzofurano[3, 2-c]chromen-3-ol 64.26 0.42 5
    Bifendate 31.10 0.67 1
    Formononetin 69.67 0.21 15
    Calycosin 47.75 0.24 13
    Kaempferol 41.88 0.24 23
    FA 68.96 0.71 2
    Isomucronulatol-7, 2'-di-O-glucosiole 49.28 0.62 0
    1, 7-Dihydroxy-3, 9-dimethoxy pterocarpene 39.05 0.48 3
    白术 14-Acetyl-12-senecioyl-2E, 8Z, 10E-atractylentriol 60.31 0.31 1
    3β-Acetoxyatractylone 54.07 0.22 2
    8β-Ethoxy atractylenolide Ⅲ 35.95 0.21 1
    白花蛇舌草 Poriferasterol 43.83 0.76 1
    2-Methoxy-3-methyl-9, 10-anthraquinone 37.83 0.21 3
    山慈菇 2-Methoxy-9, 10-dihydrophenanthrene-4, 5-diol 44.97 0.18 11
    共有成分 Stigmasterol 43.83 0.76 3
    β-Sitosterol 36.91 0.75 10
    Quercetin 46.43 0.28 72
    (3S, 8S, 9S, 10R, 13R, 14S, 17R)-10, 13-Dimethyl-17-[(2R, 5S)-5-propan-2-yloctan-2-yl]-2, 3, 4, 7, 8, 9, 11, 12, 14, 15, 16, 17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol 36.23 0.78 1
    下载: 导出CSV

    表  2  健脾解毒方活性成分与关键靶点的分子对接结果

    Table  2.   The dock results of the active ingredients of JPJDD and the key targets

    成分 结合自由能/(kJ·mol-1)
    PTGS2 PRSS1 HSP90AA1
    槲皮素 -26.417 6 -27.588 0 -25.748 8
    山柰酚 -26.166 8 -26.877 4 -27.755 2
    下载: 导出CSV
  • [1] HOPKINS AL. Network pharmacology: The next paradigm in drug discovery[J]. Nat Chem Biol, 2008, 4(11): 682-690. doi: 10.1038/nchembio.118
    [2] KIBBLE M, SAARINEN N, TANG J, et al. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products[J]. Nat Prod Rep, 2015, 32(8): 1249-1266. doi: 10.1039/C5NP00005J
    [3] YUAN HD, MA QQ, CUI HY, et al. How can synergism of traditional medicines benefit from network pharmacology?[J]. Molecules, 2017, 22(7): 1135. doi: 10.3390/molecules22071135
    [4] MUHAMMAD J, KHAN A, ALI A, et al. Network pharmacology: Exploring the resources and methodologies[J]. Curr Top Med Chem, 2018, 18(12): 949-964. doi: 10.2174/1568026618666180330141351
    [5] RU J, LI P, WANG J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6: 13. doi: 10.1186/1758-2946-6-13
    [6] XUE R, FANG Z, ZHANG M, et al. TCMID: Traditional Chinese Medicine integrative database for herb molecular mechanism analysis[J]. Nucleic Acids Res, 2013, 41: D1089-D1095. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531123/pdf/gks1100.pdf
    [7] XU HY, ZHANG YQ, LIU ZM, et al. ETCM: an encyclopaedia of traditional Chinese medicine[J]. Nucleic Acids Res, 2019, 47(d1): D976-D982. doi: 10.1093/nar/gky987
    [8] WISHART DS, FEUNANG YD, GUO AC, et al. DrugBank 5.0: A major update to the DrugBank database for 2018[J]. Nucleic Acids Res, 2018, 46(d1): D1074-D1082. doi: 10.1093/nar/gkx1037
    [9] REBHAN M, CHALIFA-CASPI V, PRILUSKY J, et al. GeneCards: A novel functional genomics compendium with automated data mining and query reformulation support[J]. Bioinformatics, 1998, 14(8): 656-664. doi: 10.1093/bioinformatics/14.8.656
    [10] TIPPMANN S. Programming tools: Adventures with R[J]. Nature, 2015, 517(7532): 109-110. doi: 10.1038/517109a
    [11] SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11): 2498-2504. doi: 10.1101/gr.1239303
    [12] MARTIN A, OCHAGAVIA ME, RABASA LC, et al. BisoGenet: A new tool for gene network building, visualization and analysis[J]. BMC Bioinformatics, 2010, 11: 91. doi: 10.1186/1471-2105-11-91
    [13] ZEILEIS A, HORNIK K, MURRELL P. Escaping RGBland: Selecting colors for statistical graphics[J]. Comput Stat Data Anal, 2009, 53(9): 3259-3270. doi: 10.1016/j.csda.2008.11.033
    [14] LAWRENCE M, HUBER W, PAGES H, et al. Software for computing and annotating genomic ranges[J]. PLoS Comput Biol, 2013, 9(8): e1003118. doi: 10.1371/journal.pcbi.1003118
    [15] WICKHAM H. ggplot2: Elegant Graphics for Data Analysis[M]. NewYork: Springer-Verlag, 2016: 8.
    [16] HUBER W, CAREY VJ, GENTLEMAN R, et al. Orchestrating high-throughput genomic analysis with Bioconductor[J]. Nature Methods, 2015, 12(2): 115-121. doi: 10.1038/nmeth.3252
    [17] BERMAN HM, WESTBROOK J, FENG Z, et al. The protein data bank[J]. Nucleic Acids Res, 2000, 28(1): 235-242. doi: 10.1093/nar/28.1.235
    [18] MORRIS GM, HUEY R, LINDSTROM W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility[J]. J Comput Chem, 2009, 30(16): 2785-2791. doi: 10.1002/jcc.21256
    [19] JASON G, PAIARDINI A. PyMod 3: A complete suite for structural bioinformatics in PyMOL[J]. Bioinformatics, 2021, 37(10): 1471-1472. doi: 10.1093/bioinformatics/btaa849
    [20] ALMATROODI SA, ALSAHLI MA, ALMATROUDI A, et al. Potential therapeutic targets of quercetin, a plant flavonol, and its role in the therapy of various types of cancer through the modulation of various cell signaling pathways[J]. Molecules, 2021, 26(5): 1315. doi: 10.3390/molecules26051315
    [21] LI QY, WEI LH, LIN S, et al. Synergistic effect of kaempferol and 5-fluorouracil on the growth of colorectal cancer cells by regulating the PI3K/Akt signaling pathway[J]. Mol Med Rep, 2019, 20(1): 728-734.
    [22] WANG X, YANG Y, AN Y, et al. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer[J]. Biomed Pharmacother, 2019, 117: 109086. doi: 10.1016/j.biopha.2019.109086
    [23] BROWN JR, DUBOIS RN. COX-2: A molecular target for colorectal cancer prevention[J]. J Clin Oncol, 2005, 23(12): 2840-2855. doi: 10.1200/JCO.2005.09.051
    [24] CHAN AT, OGINO S, FUCHS CS. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2[J]. N Engl J Med, 2007, 356(21): 2131-2142. doi: 10.1056/NEJMoa067208
    [25] CUENDA A, ROUSSEAU S. p38 MAP-kinases pathway regulation, function and role in human diseases[J]. Biochim Biophys Acta, 2007, 1773(8): 1358-1375. doi: 10.1016/j.bbamcr.2007.03.010
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  167
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-29
  • 网络出版日期:  2022-03-01
  • 发布日期:  2022-02-10

目录

    /

    返回文章
    返回