留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然黄酮类化合物对芳香烃受体的调控作用研究进展

杨玲娟 宋蒙蒙 狄留庆 丁康

杨玲娟, 宋蒙蒙, 狄留庆, 丁康. 天然黄酮类化合物对芳香烃受体的调控作用研究进展[J]. 南京中医药大学学报, 2021, 37(6): 958-964. doi: 10.14148/j.issn.1672-0482.2021.0958
引用本文: 杨玲娟, 宋蒙蒙, 狄留庆, 丁康. 天然黄酮类化合物对芳香烃受体的调控作用研究进展[J]. 南京中医药大学学报, 2021, 37(6): 958-964. doi: 10.14148/j.issn.1672-0482.2021.0958
YANG Ling-juan, SONG Meng-meng, DI Liu-qing, DING Kang. Recent Progress of Natural Flavonoids as Ligand on Aryl Hydrocarbon Receptor[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(6): 958-964. doi: 10.14148/j.issn.1672-0482.2021.0958
Citation: YANG Ling-juan, SONG Meng-meng, DI Liu-qing, DING Kang. Recent Progress of Natural Flavonoids as Ligand on Aryl Hydrocarbon Receptor[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(6): 958-964. doi: 10.14148/j.issn.1672-0482.2021.0958

天然黄酮类化合物对芳香烃受体的调控作用研究进展

doi: 10.14148/j.issn.1672-0482.2021.0958
基金项目: 

江苏省中医药科技发展计划项目 YB2020029

江苏省中医药老专家学术经验继承工作项目 2019-SSPSC-DK

南京中医药大学自然科学基金 XZR2020045

详细信息
    作者简介:

    杨玲娟, 女,副研究员,E-mail: 67230512@qq.com

    通讯作者:

    丁康,男,副主任中医师,主要从事中医药防治溃疡性结肠炎研究,E-mail:fsyy00237@njucm.edu.cn

  • 中图分类号: R284

Recent Progress of Natural Flavonoids as Ligand on Aryl Hydrocarbon Receptor

  • 摘要: 黄酮类成分广泛存在于植物、中草药中,具有多种药理学活性,近年来的研究表明,它可以通过调控多种信号通路发挥其抗炎、抗氧化、化学预防等作用。笔者聚焦在药物代谢、免疫调节、化学预防中具有重要作用的芳香烃受体,在系统综述芳香烃受体功能及调控模式基础上,总结了不同黄酮类化合物对芳香烃受体的激动或拮抗作用,并对常见黄酮成分通过芳香烃受体发挥其抗肿瘤、抗溃疡性结肠炎、抗特异性皮炎的独特作用机制进行了介绍,并展望了黄酮类化合物在上述疾病治疗中潜在前景和局限性。

     

  • 表  1  黄酮类化合物对AHR的激动/拮抗作用

    类型 中文名 英文名 细胞系/组织 激动 拮抗 参考文献
    黄酮 金合欢素
    芹菜素
    黄芩苷
    白杨素
    芫花素
    黄酮
    木犀草素
    木犀草素-7, 3'-二葡萄糖苷
    野黄芩素
    桔皮素
    五羟黄酮
    4, 7'-二甲氧基-5-羟基黄酮
    4', 5, 7-三甲氧基黄酮
    3', 4', 5, 7-四甲氧基黄酮
    Acacetin
    Apigenin
    Baicalin
    Chrysin
    Genkwanin
    Flavone
    Luteolin
    Luteolin 7, 3'-diglucoside
    Scutellarein
    Tangeretin
    Tricetin
    4, 7'-Dimethoxy-5-hydroxyflavone
    4', 5, 7-Trimethoxyflavone
    3', 4', 5, 7-Tetramethoxyflavone
    Caco2
    YAMC
    DLN
    HepG2 AHR-Lucia
    H1L6.1c2
    3T3-L1(AHR)
    HCT116
    MDA-MB-231
    肝组织(大鼠)
    心肌组织(小鼠)

    +
    +
    +
    +
    -
    +
    +
    +
    +
    -
    +
    +
    -
    +
    -
    +
    +
    +
    -
    +
    +
    -
    -
    +
    -
    -
    -
    -
    [31]
    [32]
    [33-34]
    [35-36]

    [37]
    [38]

    [32]
    [37]


    [31]
    黄酮醇 漆黄素
    黄酮醇
    高良姜素
    棉黄素
    番石榴苷
    淫羊藿素
    异鼠李素
    山柰酚
    桑色素
    杨梅素
    槲皮素
    槲皮苷
    刺槐乙素
    芦丁
    柽柳素
    3, 6, 2', 3'-四羟基黄酮
    3, 6, 2', 4'-四羟基黄酮
    Fisetin
    Flavonol
    Galangin
    Gossypetin
    Guaijaverin
    Icaritin
    Isorhamnetin
    Kaempferol
    Morin
    Myricetin
    Quercetin
    Quercitrin
    Robinetin
    Rutin
    Tamarixetin
    3, 6, 2', 3'-Tetrahydroxyflavone
    3, 6, 2', 4'-Tetrahydroxyflavone
    LNCaP
    CWR22Rv1
    Caco2
    H1L6.1c2
    3T3-L1(AHR)
    PBMEC/C1-2
    HepG2 AHR-Lucia
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    -
    +
    +
    +
    +
    +
    -
    +
    -
    -
    -
    -
    -
    +
    +
    +
    +
    +
    -
    +
    +
    -
    +

    [36]

    [39]




    [39]
    [36, 39]
    二氢
    黄酮醇
    花旗松素
    二氢杨梅素
    Taxifolin
    Dihydromyricetin
    Caco2
    HepG2
    +
    +
    -
    -
    [39]
    [40]
    黄烷酮 山姜素
    圣草酚
    黄烷酮
    橙皮素
    橙皮苷
    异黄腐醇
    柚皮素
    柚皮苷
    柚皮素二甲醚
    樱花素
    6-异戊二烯基柚皮素
    8-异戊二烯基柚皮素
    Alpinetin
    Eriodictyol
    Flavanone
    Hesperitin
    Hesperidin
    Isoxanthohumol
    Naringenin
    Naringin
    Naringenin Trimethyl Ether
    Sakuranetin
    6-Prenylnaringenin
    8-Prenylnaringenin
    HepG2
    MCF-7
    HepG2 AHR-Lucia
    H1L6.1c2
    Caco2
    YAMC
    PBMEC/C1-2
    EL-4
    +
    -
    +
    +
    +
    -
    -
    +
    -
    -
    +
    +
    -
    +
    +
    +
    -
    -
    +/-
    +
    -
    -
    -
    -

    [36]
    [32]
    [32]




    [32]
    [41]
    查尔酮 小豆蔻明 Cardamonin HepG2 AHR-Lucia, THP-1
    异黄酮 鹰嘴豆芽素A
    大豆黄素
    刺芒柄花素
    染料木素
    葛根素
    樱黄素
    4, 7'-二甲氧基-5-羟基异黄酮
    4', 5, 7-三甲氧基异黄酮
    3', 4', 5, 7-四甲氧基异黄酮
    Biochanin A
    Daidzein
    Formononetin
    Genistein
    Puerarin
    Prunetin
    4, 7'-Dimethoxy-5-hydroxyisoflavone
    4', 5, 7-Trimethoxyisoflavone
    3', 4', 5, 7-Tetramethoxyisoflavone
    Caco2
    YAMC
    H1L6.1c2
    MCF-7
    HC-04
    HepG2(AZ-AHR)
    Hepa-1c1c7
    HepG2 AHR-Lucia
    +
    -
    +
    -
    -
    -
    -
    +
    -
    -
    +/-
    -
    +/-
    -
    -
    -
    -
    -
    [31]
    [36]

    [31-32]


    [41]
    [31]
    [31]
    下载: 导出CSV
  • [1] ABDELGHFFAR EA, EL-NASHAR HAS, AL-MOHAMMADI AGA, et al. Orange fruit (Citrus sinensis) peel extract attenuates chemotherapy-induced toxicity in male rats[J]. Food Funct, 2021, 12(19): 9443-9455. doi: 10.1039/D1FO01905H
    [2] MOON KM, LEE B, CHO WK, et al. Swertiajaponin as an anti-browning and antioxidant flavonoid[J]. Food Chem, 2018, 252: 207-214. doi: 10.1016/j.foodchem.2018.01.053
    [3] ZHANG L, WANG S, LI Y, et al. Cardioprotective effect of icariin against myocardial fibrosis and its molecular mechanism in diabetic cardiomyopathy based on network pharmacology: Role of ICA in DCM[J]. Phytomedicine, 2021, 91: 153607. doi: 10.1016/j.phymed.2021.153607
    [4] WANG SB, ZHAO Y, SONG JK, et al. Total flavonoids from Anchusa italica Retz. Improve cardiac function and attenuate cardiac remodeling post myocardial infarction in mice[J]. J Ethnopharmacol, 2020, 257: 112887. doi: 10.1016/j.jep.2020.112887
    [5] KOLODZIEJCZYK-CZEPAS J, KOZACHOK S, PECIO Ł, et al. Determination of phenolic profiles of Herniaria polygama and Herniaria incana fractions and their in vitro antioxidant and anti-inflammatory effects[J]. Phytochemistry, 2021, 190: 112861. doi: 10.1016/j.phytochem.2021.112861
    [6] ZHAO K, CHEN M, LIU T, et al. Rhizoma drynariae total flavonoids inhibit the inflammatory response and matrix degeneration via MAPK pathway in a rat degenerative cervical intervertebral disc model[J]. Biomed Pharmacother, 2021, 138: 111466. doi: 10.1016/j.biopha.2021.111466
    [7] LI XY, CHEN HL, ZHANG ZL, et al. Isorhamnetin promotes estrogen biosynthesis and proliferation in porcine granulosa cells via the PI3K/Akt signaling pathway[J]. J Agric Food Chem, 2021, 69(23): 6535-6542. doi: 10.1021/acs.jafc.1c01543
    [8] SINDHU RK, VERMA R, SALGOTRA T, et al. Impacting the remedial potential of nano delivery-based flavonoids for breast cancer treatment[J]. Molecules, 2021, 26(17): 5163. doi: 10.3390/molecules26175163
    [9] TENG H, ZHENG Y, CAO H, et al. Enhancement of bioavailability and bioactivity of diet-derived flavonoids by application of nanotechnology: A review[J]. Crit Rev Food Sci Nutr, 2021: 1-16.
    [10] NAM G, HONG M, LEE J, et al. Multiple reactivities of flavonoids towards pathological elements in Alzheimer's disease: Structure-activity relationship[J]. Chem Sci, 2020, 11(37): 10243-10254. doi: 10.1039/D0SC02046J
    [11] MENG DM, ZHU L, ZHANG LQ, et al. Succinylated ferritin as a novel nanocage-like vehicle of polyphenol: Structure, stability, and absorption analysis[J]. Food Chem, 2021, 361: 130069. doi: 10.1016/j.foodchem.2021.130069
    [12] YU ZL, YUE B, DING LL, et al. Activation of PXR by alpinetin contributes to abrogate chemically induced inflammatory bowel disease[J]. Front Pharmacol, 2020, 11: 474. doi: 10.3389/fphar.2020.00474
    [13] ZHANG G, SUN X, WEN Y, et al. Hesperidin alleviates cholestasis via activation of the farnesoid X receptor in vitro and in vivo[J]. Eur J Pharmacol, 2020, 885: 173498. doi: 10.1016/j.ejphar.2020.173498
    [14] LIU C, LI Y, CHEN Y, et al. Baicalein restores the balance of Th17/treg cells via aryl hydrocarbon receptor to attenuate colitis[J]. Mediators Inflamm, 2020, 2020: 5918587. http://www.researchgate.net/publication/346110244_Baicalein_Restores_the_Balance_of_Th17Treg_Cells_via_Aryl_Hydrocarbon_Receptor_to_Attenuate_Colitis/download
    [15] YU AR, JEONG YJ, HWANG CY, et al. Alpha-naphthoflavone induces apoptosis through endoplasmic Reticulum stress via c-Src-, ROS-, MAPKs-, and arylhydrocarbon receptor-dependent pathways in HT22 hippocampal neuronal cells[J]. Neurotoxicology, 2019, 71: 39-51. doi: 10.1016/j.neuro.2018.11.011
    [16] WILSON SR, JOSHI AD, ELFERINK CJ. The tumor suppressor Kruppel-like factor 6 is a novel aryl hydrocarbon receptor DNA binding partner[J]. J Pharmacol Exp Ther, 2013, 345(3): 419-429. doi: 10.1124/jpet.113.203786
    [17] HANKINSON O. The aryl hydrocarbon receptor complex[J]. Annu Rev Pharmacol Toxicol, 1995, 35(1): 307-340. doi: 10.1146/annurev.pa.35.040195.001515
    [18] BACSI SG, HANKINSON O. Functional characterization of DNA-binding domains of the subunits of the heterodimeric aryl hydrocarbon receptor complex imputing novel and canonical basic helix-loop-helix protein-DNA interactions[J]. J Biol Chem, 1996, 271(15): 8843-8850. doi: 10.1074/jbc.271.15.8843
    [19] DENISON MS, NAGY SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals[J]. Annu Rev Pharmacol Toxicol, 2003, 43: 309-334. doi: 10.1146/annurev.pharmtox.43.100901.135828
    [20] PARK H, JIN UH, KARKI K, et al. Dopamine is an aryl hydrocarbon receptor agonist[J]. Biochem J, 2020, 477(19): 3899-3910. doi: 10.1042/BCJ20200440
    [21] XU H, LI C, LI Y, et al. Generation of tg(cyp1a: Gfp) transgenic zebrafish for development of a convenient and sensitive in vivo assay for aryl hydrocarbon receptor activity[J]. Mar Biotechnol (NY), 2015, 17(6): 831-840. doi: 10.1007/s10126-015-9669-1
    [22] DONG F, PERDEW GH. The aryl hydrocarbon receptor as a mediator of host-microbiota interplay[J]. Gut Microbes, 2020, 12(1): 1859812. doi: 10.1080/19490976.2020.1859812
    [23] SCHIERING C, WINCENT E, METIDJI A, et al. Feedback control of AHR signalling regulates intestinal immunity[J]. Nature, 2017, 542(7640): 242-245. doi: 10.1038/nature21080
    [24] METIDJI A, OMENETTI S, CROTTA S, et al. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity[J]. Immunity, 2018, 49(2): 353-362.e5. doi: 10.1016/j.immuni.2018.07.010
    [25] SINGH R, CHANDRASHEKHARAPPA S, BODDULURI SR, et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway[J]. Nat Commun, 2019, 10(1): 89. doi: 10.1038/s41467-018-07859-7
    [26] MATOBA H, TAKAMOTO M, FUJII C, et al. Cecal tumorigenesis in aryl hydrocarbon receptor-deficient mice depends on cecum-specific mitogen-activated protein kinase pathway activation and inflammation[J]. Am J Pathol, 2020, 190(2): 453-468. doi: 10.1016/j.ajpath.2019.10.005
    [27] GRONKE K, HERNANDEZ PP, ZIMMERMANN J, et al. Interleukin-22 protects intestinal stem cells against genotoxic stress[J]. Nature, 2019, 566(7743): 249-253. doi: 10.1038/s41586-019-0899-7
    [28] TERASHIMA J, JIMMA Y, JIMMA K, et al. The regulation mechanism of AhR activated by benzo[a]Pyrene for CYP expression are different between 2D and 3D culture of human lung cancer cells[J]. Drug Metab Pharmacokinet, 2018, 33(4): 211-214.
    [29] DVORAK Z, VRZAL R, HENKLOVA P, et al. JNK inhibitor SP600125 is a partial agonist of human aryl hydrocarbon receptor and induces CYP1A1 and CYP1A2 genes in primary human hepatocytes[J]. Biochem Pharmacol, 2008, 75(2): 580-588. doi: 10.1016/j.bcp.2007.09.013
    [30] HARADA A, SUGIHARA K, WATANABE Y, et al. Aryl hydrocarbon receptor ligand activity of extracts from 62 herbal medicines and effect on cytochrome P450 activity[J]. Yakugaku Zasshi, 2015, 135(10): 1185-1196. doi: 10.1248/yakushi.15-00153
    [31] PARK H, JIN UH, ORR AA, et al. Isoflavones as ah receptor agonists in colon-derived cell lines: Structure-activity relationships[J]. Chem Res Toxicol, 2019, 32(11): 2353-2364. doi: 10.1021/acs.chemrestox.9b00352
    [32] GOYA-JORGE E, GINER RM, SYLLA-IYARRETA VEITÍA M, et al. Predictive modeling of aryl hydrocarbon receptor (AhR) agonism[J]. Chemosphere, 2020, 256: 127068. doi: 10.1016/j.chemosphere.2020.127068
    [33] XUE Y, SHUI X, SU W, et al. Baicalin inhibits inflammation and attenuates myocardial ischaemic injury by aryl hydrocarbon receptor[J]. J Pharm Pharmacol, 2015, 67(12): 1756-1764. doi: 10.1111/jphp.12484
    [34] ZHU W, CHEN X, YU J, et al. Baicalin modulates the Treg/Teff balance to alleviate uveitis by activating the aryl hydrocarbon receptor[J]. Biochem Pharmacol, 2018, 154: 18-27. doi: 10.1016/j.bcp.2018.04.006
    [35] RONNEKLEIV-KELLY SM, NUKAYA M, DÍAZ-DÍAZ CJ, et al. Aryl hydrocarbon receptor-dependent apoptotic cell death induced by the flavonoid chrysin in human colorectal cancer cells[J]. Cancer Lett, 2016, 370(1): 91-99. doi: 10.1016/j.canlet.2015.10.014
    [36] ASHIDA H, FUKUDA I, YAMASHITA T, et al. Flavones and flavonols at dietary levels inhibit a transformation of aryl hydrocarbon receptor induced by dioxin[J]. FEBS Lett, 2000, 476(3): 213-217. doi: 10.1016/S0014-5793(00)01730-0
    [37] ASHIDA H. Suppressive effects of flavonoids on dioxin toxicity[J]. Biofactors, 2000, 12(1/2/3/4): 201-206. http://www.onacademic.com/detail/journal_1000034785820610_d6f5.html
    [38] FENG J, ZHENG T, HOU Z, et al. Luteolin, an aryl hydrocarbon receptor ligand, suppresses tumor metastasis in vitro and in vivo[J]. Oncol Rep, 2020, 44(5): 2231-2240. http://www.ingentaconnect.com/content/sp/or/2020/00000044/00000005/art00040
    [39] JIN UH, PARK H, LI X, et al. Structure-dependent modulation of aryl hydrocarbon receptor-mediated activities by flavonoids[J]. Toxicol Sci, 2018, 164(1): 205-217. doi: 10.1093/toxsci/kfy075
    [40] BOSTIKOVA Z, MOSEROVA M, PAVEK P, et al. Role of dihydromyricetin in cytochrome P450-mediated metabolism and carcinogen activation[J]. Neuro Endocrinol Lett, 2015, 36(Suppl 1): 46-52.
    [41] WANG S, DUNLAP TL, HOWELL CE, et al. Hop (Humulus lupulus L. ) extract and 6-prenylnaringenin induce P450 1A1 catalyzed estrogen 2-hydroxylation[J]. Chem Res Toxicol, 2016, 29(7): 1142-1150. doi: 10.1021/acs.chemrestox.6b00112
    [42] KIM M, JEE SC, KIM KS, et al. Quercetin and isorhamnetin attenuate benzo[a]Pyrene-induced toxicity by modulating detoxification enzymes through the AhR and NRF2 signaling pathways[J]. Antioxidants, 2021, 10(5): 787.
    [43] WANG L, XUE J, WEI F, et al. Chemopreventive effect of galangin against benzo(a)Pyrene-induced stomach tumorigenesis through modulating aryl hydrocarbon receptor in Swiss albino mice[J]. Hum Exp Toxicol, 2021, 40(9): 1434-1444. doi: 10.1177/0960327121997979
    [44] LI H, YUAN L, LI XY, et al. Isoorientin attenuated the pyroptotic hepatocyte damage induced by benzo[a]Pyrene via ROS/NF-κB/NLRP3/caspase-1 signaling pathway[J]. Antioxidants, 2021, 10(8): 1275. doi: 10.3390/antiox10081275
    [45] MIAO Y, LV Q, QIAO S, et al. Alpinetin improves intestinal barrier homeostasis via regulating AhR/suv39h1/TSC2/mTORC1/autophagy pathway[J]. Toxicol Appl Pharmacol, 2019, 384: 114772. doi: 10.1016/j.taap.2019.114772
    [46] LV Q, SHI C, QIAO S, et al. Alpinetin exerts anti-colitis efficacy by activating AhR, regulating miR-302/DNMT-1/CREB signals, and therefore promoting Treg differentiation[J]. Cell Death Dis, 2018, 9(9): 890. doi: 10.1038/s41419-018-0814-4
    [47] WANG K, LV Q, MIAO YM, et al. Cardamonin, a natural flavone, alleviates inflammatory bowel disease by the inhibition of NLRP3 inflammasome activation via an AhR/Nrf2/NQO1 pathway[J]. Biochem Pharmacol, 2018, 155: 494-509. doi: 10.1016/j.bcp.2018.07.039
    [48] LEE J, SONG KM, JUNG CH. Diosmin restores the skin barrier by targeting the aryl hydrocarbon receptor in atopic dermatitis[J]. Phytomedicine, 2021, 81: 153418. doi: 10.1016/j.phymed.2020.153418
    [49] XU X, DONG QW, ZHONG QL, et al. The flavonoid kurarinone regulates macrophage functions via aryl hydrocarbon receptor and alleviates intestinal inflammation in irritable bowel syndrome[J]. J Inflamm Res, 2021, 14: 4347-4359. doi: 10.2147/JIR.S329091
  • 加载中
表(1)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  80
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-09
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2021-11-10
  • 发布日期:  2021-11-15

目录

    /

    返回文章
    返回