留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Huangqi Guizhi Wuwu Decoction Ameliorates Focal Cerebral Ischemia-Reperfusion Injury in Rats: Pharmacological and Metabolomics Evidences

LING Jin-ying WANG Qi FAN Hai-zhen DAI Jing-ya CHENG Xiao-lan

凌金颖, 王琦, 范海贞, 戴婧雅, 成小兰. 黄芪桂枝五物汤改善大鼠局灶性脑缺血再灌注损伤: 药理和代谢组学证据[J]. 南京中医药大学学报, 2021, 37(6): 920-929. doi: 10.14148/j.issn.1672-0482.2021.0920
引用本文: 凌金颖, 王琦, 范海贞, 戴婧雅, 成小兰. 黄芪桂枝五物汤改善大鼠局灶性脑缺血再灌注损伤: 药理和代谢组学证据[J]. 南京中医药大学学报, 2021, 37(6): 920-929. doi: 10.14148/j.issn.1672-0482.2021.0920
LING Jin-ying, WANG Qi, FAN Hai-zhen, DAI Jing-ya, CHENG Xiao-lan. Huangqi Guizhi Wuwu Decoction Ameliorates Focal Cerebral Ischemia-Reperfusion Injury in Rats: Pharmacological and Metabolomics Evidences[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(6): 920-929. doi: 10.14148/j.issn.1672-0482.2021.0920
Citation: LING Jin-ying, WANG Qi, FAN Hai-zhen, DAI Jing-ya, CHENG Xiao-lan. Huangqi Guizhi Wuwu Decoction Ameliorates Focal Cerebral Ischemia-Reperfusion Injury in Rats: Pharmacological and Metabolomics Evidences[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(6): 920-929. doi: 10.14148/j.issn.1672-0482.2021.0920

Huangqi Guizhi Wuwu Decoction Ameliorates Focal Cerebral Ischemia-Reperfusion Injury in Rats: Pharmacological and Metabolomics Evidences

doi: 10.14148/j.issn.1672-0482.2021.0920
More Information
  • 摘要:   目的  研究黄芪桂枝五物汤对脑缺血损伤的神经保护作用,并探讨其可能作用机制。  方法  将50只大鼠随机分为假手术组, 模型组及黄芪桂枝五物汤低、中、高剂量组(5、10、20 g·kg-1),每组10只。除假手术组外,大鼠采用线栓法建立大脑中动脉闭塞(MCAO)模型。中药组大鼠灌胃给予复方水煎液,假手术组和模型组大鼠灌胃给予等量的生理盐水。连续灌胃7 d后,处死大鼠。通过神经功能缺损评分、脑梗死面积、脂质过氧化和炎症细胞因子水平检测来评估各组大鼠脑缺血性损伤程度。同时通过代谢组学研究黄芪桂枝五物汤对脑缺血再灌注损伤的可能机制。  结果  黄芪桂枝五物汤可显著降低神经功能缺损评分和脑梗死面积,减少脂质过氧化和炎症细胞因子水平,表明其可有效减轻MCAO诱导的大鼠脑缺血性损伤。进一步的代谢组学研究表明,脑缺血再灌注损伤后血清代谢紊乱,共筛选和鉴定出23种与缺血性中风相关的代谢物发生显著性变化,是脑缺血潜在的生物标志物。代谢通路分析显示,MCAO主要通过靶向乙醛酸和二羧酸代谢,以及苯丙氨酸、酪氨酸和色氨酸的生物合成来诱导脑缺血性损伤。黄芪桂枝五物汤干预后,大部分代谢标记物发生了逆转, 主要包括吲哚氧基硫酸、柠檬酸、3-羟基十二酸、3-甲基-2-丁烯酸、苹果酸、丁醛和尿酸等。  结论  黄芪桂枝五物汤可有效改善大鼠局灶性脑缺血再灌注损伤, 其发挥神经保护作用的机制可能与抑制炎症、改善多种代谢途径有关。

     

  • Figure  1.  Scheme of experimental design of the study

    Figure  2.  The effect of HGWD on scores of neurological deficit and cerebral infarction size in rats

    Note: (A) Neurological deficit scores were determined according to Zea-Longa 5-point scheme. (B) TTC staining photograph in Sham, MCAO, HGWD groups. (C) infarct volume.
    *P < 0.05, **P < 0.01, compared with MCAO group. ##P < 0.01, compared with sham group.

    Figure  3.  Degeneration of brain tissues and neurons in MCAO group, ameliorated by HGWD pretreatment

    Figure  4.  Restoring effects of HGWD on biological parameters and expression of inflammatory factors in brain of rats

    Note: ##P < 0.01, compared with the control group; *P < 0.05, * *P < 0.01, compared with the MCAO group.

    Figure  5.  PLS-DA Plots of metabolic disturbances of MCAO-induced focal cerebral ischemia

    Note: The PLS-DA plots showed clear separation between Control and MCAO. (A) Positive: R2X=0.791, Q2=0.653. (B) Negative: R2X=0.557, Q2=0.575.

    Figure  6.  Metabolites variation analysis

    Note: (A) Heatmap of metabolite concentrations. (B) Metabolism pathway affected by MCAO treatment.
    a. Arginine and proline metabolism; b. Citrate cycle (TCA cycle); c. Glyoxylate and dicarboxylate metabolism; d. Phenylalanine, tyrosine and tryptophan biosynthesis; e. Glycerophospholipid metabolism.

    Figure  7.  Effects of HGWD on regulating the metabolic disturbances

    Figure  8.  Interaction networks of enzymes and proteins

    Note: (A) Functional interaction networks of the key enzymes were collected and input into the STRING database to analyze interactions between them (interaction score=0.9). Acly, ido1, mdh2 and tph1 were 4 most interactive enzymes. Functional interaction networks of acly (B), ido1 (C), mdh2 (D) and tph1 (E). Only proteins with highest confidence (interaction score=0.9) were considered as possible targets network for the metabolites.

    Table  1.   Significantly differential metabolites

    HMDB Code Name m/z Retention
    time/min
    P-value VIP FC
    (+) HMDB0000509 3-Methyl-2-butenoic acid 101.059 72 0.69 0.001 948 2.051 59 1.33
    HMDB0000714 Hippuric acid 180.065 42 7.06 0.001 948 1.109 93 4.00
    HMDB0003543 Butanal 73.064 54 17.65 0.003 876 1.228 98 1.19
    HMDB0000158 L-Tyrosine 182.081 14 3.59 0.003 876 3.816 20 1.85
    HMDB0010395 LysoPC(20∶4 (5Z, 8Z, 11Z, 14Z)) 544.338 45 15.83 0.003 876 6.214 17 1.65
    HMDB0002302 Indole-3-propionic acid 190.086 11 10.81 0.005 385 1.245 83 3.75
    HMDB0000517 L-Arginine 175.118 84 1.44 0.007 406 1.582 33 1.58
    HMDB0010383 LysoPC(16∶1(9Z)/0∶0) 494.323 09 15.35 0.010 082 3.642 14 2.59
    HMDB0001080 4-Aminobutyraldehyde 88.075 50 15.20 0.013 587 3.478 89 2.04
    HMDB0000734 Indoleacrylic acid 188.070 50 5.81 0.013 587 1.221 11 1.33
    HMDB0000387 3-Hydroxydodecanoic acid 217.179 71 16.94 0.013 587 2.288 45 1.91
    HMDB0000929 L-Tryptophan 205.097 11 5.81 0.0181 29 3.436 01 1.23
    HMDB0000097 Choline 104.106 89 1.48 0.023 949 2.027 37 1.43
    HMDB0010404 LysoPC(22∶6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)) 568.338 35 15.76 0.031 324 1.485 42 1.33
    - 1, 4-Dioxane 89.059 53 17.21 0.000 939 2.152 93 1.37
    (-) HMDB0001865 2-Ketovaleric acid 115.039 56 4.84 0.000 939 2.459 03 3.14
    HMDB0001864 2-Ketohexanoic acid 129.055 70 7.25 0.000 939 5.719 27 3.04
    HMDB0000094 Citric acid 191.018 08 2.62 0.000 939 2.473 79 2.48
    HMDB0000943 Threonate 135.029 11 2.44 0.005 385 7.506 99 1.60
    HMDB0000744 Malic acid 133.013 58 1.83 0.007 406 2.119 47 2.53
    HMDB0000289 Uric acid 167.019 83 2.51 0.010 082 2.490 11 1.55
    HMDB0000682 Indoxylsulfuric acid 211.999 98 6.89 0.010 082 1.768 79 2.11
    HMDB0003345 α-D-Glucose 179.054 76 2.44 0.023 949 3.301 15 1.51
    下载: 导出CSV

    Table  2.   Key enzymes of HGWD treatment

    Enzyme Full name Uniprot ID
    Glyat Glycine N-acyltransferase Q6IB77
    Glyatl3 Glycine N-acyltransferase-like protein 3 Q5SZD4
    Ddc Aromatic-L-amino-acid decarboxylase P20711
    Ido1 Indoleamine 2, 3-dioxygenase 1 P14902
    Tph1 Tryptophan 5-hydroxylase 1 P17752
    Acly ATP-citrate synthase P53396
    Akr1b1 Aldose reductase P15121
    Mif Macrophage migration inhibitory factor P14174
    Ugt1a1 UDP-glucuronosyltransferase 1-1 P22309
    Me1 NADP-dependent malic enzyme Q16798
    Me2 NAD-dependent malic enzyme P23368
    Rdh13 Retinol dehydrogenase 13 Q8NBN7
    Hk2 Hexokinase-2 P52789
    Enpp3 Ectonucleotide pyrophosphatase/Phosphodiesterase family member 1 P22413
    Hk1 Hexokinase-1 P19367
    Gck Glucokinase P35557
    Hk3 Hexokinase-3 P52790
    Mdh2 Malate dehydrogenase P40925
    下载: 导出CSV

    Table  3.   Key proteins of HGWD

    Enzyme Full name Uniprot ID
    Acaca Acetyl-CoA carboxylase 1 Q13085
    Dhtkd1 Dehydrogenase E1 and transketolase domain containing 1 Q96HY7
    Mdh1 Malate dehydrogenase, cytoplasmic P40925
    Mdh2 Malate dehydrogenase, mitochondrial P40926
    Ogdh 2-Oxoglutarate dehydrogenase, mitochondrial Q02218
    Ogdhl 2-Oxoglutarate dehydrogenase-like, mitochondrial Q9ULD0
    Sdha Succinate dehydrogenase[ubiquinone]flavoprotein subunit, mitochondrial P31040
    Sdhb Succinate dehydrogenase[ubiquinone]iron-sulfur subunit, mitochondrial P21912
    Sucla2 Succinyl-CoA ligase Q9P2R7
    Afmid Arylformamidase Q63HM1
    Ddc Aromatic-L-amino-acid decarboxylase P20711
    Kynu Kynureninase Q16719
    Maoa Amine oxidase P21397
    Tdo2 Tryptophan 2, 3-dioxygenase P48775
    Tph1 Tryptophan 5-hydroxylase 1 P17752
    Tph2 Tryptophan 5-hydroxylase 2 Q8IWU9
    Acly ATP-citrate synthase isoform 1 P53396
    Atp5c1 ATP synthase subunit gamma, mitochondrial P36542
    Cs Citrate synthase O75390
    Fh Fumarate hydratase, mitochondrial precursor P07954
    Got1 Aspartate aminotransferase, cytoplasmic P17174
    Got2 Aspartate aminotransferase, mitochondrial P00505
    Me1 NADP-dependent malic enzyme P48163
    Me2 NAD-dependent malic enzyme, mitochondrial P23368
    Me3 NADP-dependent malic enzyme, mitochondrial Q16798
    Ido1 Indoleamine 2, 3-dioxygenase 1 P14902
    Ido2 Indoleamine 2, 3-dioxygenase 2 Q6ZQW0
    Il4i1 Interleukin 4 induced 1 Q96RQ9
    下载: 导出CSV
  • [1] LLOYD-JONES D, ADAMS RJ, BROWN TM, et al. Heart disease and stroke statistics: 2010 update a report from the American Heart Association[J]. Circulation 2010, 121, e46-e215.
    [2] SUZUKI Y, KITAHARA T, SOMA K, et al. Impact of platelet transfusion on survival of patients with intracerebral hemorrhage after administration of anti-platelet agents at a tertiary emergency center[J]. PLoS ONE, 2014, 9(5): e97328. doi: 10.1371/journal.pone.0097328
    [3] KERNAN WN, LAUNER LJ, GOLDSTEIN LB. What is the future of stroke prevention? Debate: versus personalized risk factor modification[J]. Stroke, 2010, 41(S10): S35-S38. http://www.onacademic.com/detail/journal_1000038279191610_ed7a.html
    [4] ZHANG ZJ. Jin Gui Yao Lüe (Essential Prescriptions of the Golden Chamber)[M]. New York: Paradigm publications, 2013.
    [5] BAI Q. The influence of Huangqi Guizhi Wuwu Decoction on diabetic peripheral neuropathy and nerve conduction velocity[J]. Chin Tradit Pat Med, 2015, 37(5), 962-964.
    [6] CHENG XL, HUO JG, WANG DW, et al. Herbal medicine AC591 prevents oxaliplatin-induced peripheral neuropathy in animal model and cancer patients[J]. Front Pharmacol, 2017, 8: 344. doi: 10.3389/fphar.2017.00344
    [7] FU J, WANG Z, HUANG L, et al. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi)[J]. Phytother Res, 2014, 28(9): 1275-1283. doi: 10.1002/ptr.5188
    [8] YANG X, YAO W, SHI H, et al. Paeoniflorin protects Schwann cells against high glucose induced oxidative injury by activating Nrf2/ARE pathway and inhibiting apoptosis[J]. J Ethnopharmacol, 2016, 185: 361-369. doi: 10.1016/j.jep.2016.03.031
    [9] SHAH SH, KRAUS WE, NEWGARD CB. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: Form and function[J]. Circulation, 2012, 126(9): 1110-1120. doi: 10.1161/CIRCULATIONAHA.111.060368
    [10] FAN Y, LI Y, CHEN Y, et al. Comprehensive metabolomic characterization of coronary artery diseases[J]. J Am Coll Cardiol, 2016, 68(12): 1281-1293. doi: 10.1016/j.jacc.2016.06.044
    [11] MA X, CHI YH, NIU M, et al. Metabolomics coupled with multivariate data and pathway analysis on potential biomarkers in cholestasis and intervention effect of Paeonia lactiflora Pall. [J]. Front Pharmacol, 2016, 7: 14. http://pdfs.semanticscholar.org/e5cc/e726f0742d99de006adea93893a8e3778278.pdf
    [12] NICHOLSON JK, LINDON JC, HOLMES E. Metabonomics: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11): 1181-1189. doi: 10.1080/004982599238047
    [13] SONG X, WANG J, WANG P, et al. 1H NMR-based metabolomics approach to evaluate the effect of Xue-Fu-Zhu-Yu decoction on hyperlipidemia rats induced by high-fat diet[J]. J Pharm Biomed Anal, 2013, 78/79: 202-210. http://www.onacademic.com/detail/journal_1000036119303010_c773.html
    [14] DENOROY L, ZIMMER L, RENAUD B, et al. Ultra high performance liquid chromatography as a tool for the discovery and the analysis of biomarkers of diseases: A review[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2013, 927: 37-53. doi: 10.1016/j.jchromb.2012.12.005
    [15] LONGA EZ, WEINSTEIN PR, CARLSON S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1): 84-91. doi: 10.1161/01.STR.20.1.84
    [16] ZHU B, CAO H, SUN L, et al. Metabolomics-based mechanisms exploration of Huang-Lian Jie-Du decoction on cerebral ischemia via UPLC-Q-TOF/MS analysis on rat serum[J]. J Ethnopharmacol, 2018, 216: 147-156. doi: 10.1016/j.jep.2018.01.015
    [17] LIU SY, CAI W, WANG F, et al. UHPLC-LTQ-Orbitrap-based metabolomics coupled with metabolomics pathway analysis method for exploring the protection mechanism of Kudiezi injection in a rat anti-ischemic cerebral reperfusion damage model[J]. Chin J Nat Med, 2017, 15(12): 955-960. http://www.sciencedirect.com/science/article/pii/s187553641830013x
    [18] GAO J, YANG H, CHEN J, et al. Analysis of serum metabolites for the discovery of amino acid biomarkers and the effect of galangin on cerebral ischemia[J]. Mol Biosyst, 2013, 9(9): 2311-2321. doi: 10.1039/c3mb70040b
    [19] SUN D, ZHANG J, FAN Y, et al. Abnormal levels of brain metabolites may mediate cognitive impairment in stroke-free patients with cerebrovascular risk factors[J]. Age Ageing, 2014, 43(5): 681-686. doi: 10.1093/ageing/afu027
    [20] WANG Y, WANG Y, LI M, et al. (1)H NMR-based metabolomics exploring biomarkers in rat cerebrospinal fluid after cerebral ischemia/reperfusion[J]. Mol Biosyst, 2013, 9(3): 431-439. doi: 10.1039/c2mb25224d
    [21] WALLIMANN T, TOKARSKA-SCHLATTNER M, SCHLATTNER U. The creatine kinase system and pleiotropic effects of creatine[J]. Amino Acid, 2011, 40(5): 1271-1296. doi: 10.1007/s00726-011-0877-3
    [22] LI YY, ZHANG B, YU KW, et al. Effects of constraint-induced movement therapy on brain glucose metabolism in a rat model of cerebral ischemia: A micro PET/CT study[J]. Int J Neurosci, 2018, 128(8): 736-745. doi: 10.1080/00207454.2017.1418343
    [23] HOZAWA A, FOLSOM AR, IBRAHIM H, et al. Serum uric acid and risk of ischemic stroke: The ARIC study[J]. Atherosclerosis, 2006, 187(2): 401-407. doi: 10.1016/j.atherosclerosis.2005.09.020
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  66
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-12
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2021-11-10
  • 发布日期:  2021-11-15

目录

    /

    返回文章
    返回