留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中草药干燥加工现状及发展趋势

巨浩羽 赵士豪 赵海燕 张卫鹏 高振江 肖红伟

巨浩羽, 赵士豪, 赵海燕, 张卫鹏, 高振江, 肖红伟. 中草药干燥加工现状及发展趋势[J]. 南京中医药大学学报, 2021, 37(5): 786-196. doi: 10.14148/j.issn.1672-0482.2021.0786
引用本文: 巨浩羽, 赵士豪, 赵海燕, 张卫鹏, 高振江, 肖红伟. 中草药干燥加工现状及发展趋势[J]. 南京中医药大学学报, 2021, 37(5): 786-196. doi: 10.14148/j.issn.1672-0482.2021.0786
JU Hao-yu, ZHAO Shi-hao, ZHAO Hai-yan, ZHANG Wei-peng, GAO Zhen-jiang, XIAO Hong-wei. Present Situation and Developing Trend on Drying of Chinese Herbs[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(5): 786-196. doi: 10.14148/j.issn.1672-0482.2021.0786
Citation: JU Hao-yu, ZHAO Shi-hao, ZHAO Hai-yan, ZHANG Wei-peng, GAO Zhen-jiang, XIAO Hong-wei. Present Situation and Developing Trend on Drying of Chinese Herbs[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(5): 786-196. doi: 10.14148/j.issn.1672-0482.2021.0786

中草药干燥加工现状及发展趋势

doi: 10.14148/j.issn.1672-0482.2021.0786
基金项目: 

河北省自然科学基金 C2020207004

河北省高等学校科学技术研究项目 QN2021054

北京市自然科学基金 6204035

北京市优秀人才培养资助青年骨干个人项目 2018000020124G034

河北经贸大学“生物工程”专项 2021SGYB03

详细信息
    作者简介:

    巨浩羽, 男, 讲师, E-mail: ju56238@163.com

    通讯作者:

    肖红伟, 男, 副教授, 主要从事农产品干燥技术与装备研究,E-mail: xhwcaugxy@163.com

  • 中图分类号: R283.3

Present Situation and Developing Trend on Drying of Chinese Herbs

  • 摘要: 干燥过程是影响中草药质量和药效的重要环节, 干燥结果直接影响着产品的使用和经济价值。该文综述了中药材的干燥技术、干燥模型和干燥过程中有效成分降解规律的研究现状及发展趋势。针对中草药的干燥技术, 分别分析了阴干、晒干和烘干的传统干燥技术及气体射流冲击、真空脉动、中短波红外、射频等新型干燥技术的优缺点及对中草药物料的适用范围; 对于干燥模型, 论述了理论模型、半理论模型和经验模型在中草药干燥加工中的应用; 以生物碱类、黄酮类、多糖类和色素类为代表性中草药药用成分指标, 论述了干燥过程中降解的影响因素及变化规律。明确中草药各类干燥技术的特性和有效成分的降解规律、建立合适的干燥模型, 以期为不同类型的中草药选用合适的干燥技术及工艺提供理论依据。

     

  • 图  1  气体射流冲击干燥技术原理示意图[26]

    图  2  真空脉动工作原理示意图[34]

    表  1  5种中草药热风干燥条件及主要结论

    中草药类别 干燥条件 主要结论 参考文献
    二至丸 干燥温度50、60、70、80、90 ℃ 干燥速率随着干燥温度的升高而加快; 内部水分扩散是控制丸剂水分运动的主要物理机制 齐娅汝等[13]
    三七块根 干燥温度40、50、60 ℃ 干燥温度越高、干燥时间越短; 三七块根干燥可分为表面水分蒸发和内部水分扩散两个阶段 刘勇等[14]
    枸杞 干燥温度40、50、60 ℃ 干燥温度越高, 干燥速率越快; 干燥温度为60 ℃时, 干燥时间约为38 h Zhao等[15]
    山药片 干燥温度50、60、70 ℃; 风速0.5、1.0、1.5 m·s-1; 厚度3、6、9 mm 干燥过程只有降速干燥阶段; 干燥时间随温度、风速的升高而缩短, 随切片厚度的增大而延长; 水分有效扩散系数随温度、风速和切片厚度的增大而增大, 变化范围为6.382×10-9~1.641×10-7 m2·s-1 Ojediran等[16]
    光皮木瓜 干燥温度35、55、75 ℃ 低温干燥对光皮木瓜组织破坏较小, 有利于不易流动水转换为自由水 陈衍男等[17]
    下载: 导出CSV

    表  2  气体射流冲击干燥技术在中草药干燥加工中的应用

    中草药类别 干燥条件 主要结论 参考文献
    山药片 5 mm厚山药片, 干燥温度70 ℃, 风速15 m·s-1 干燥时间为120 min, 水分有效扩散系数1.30×10-9 m2·s-1, 色差值ΔE为15.21, 尿囊素含量为0.62 mg·g-1 [25]
    党参根 干燥温度40、50、60、70、80 ℃; 喷嘴到物料托盘距离5、10、15 cm; 风速8、11、14 m·s-1 对党参根干燥速率和水分有效扩散系数的影响顺序依次为风温、喷嘴到物料托盘的间距和风速; 水分有效扩散系数在1.590 4×10-10~3.068 4×10-10 m2·s-1; 干燥活化能为15.86 kJ·mol-1 [14]
    茯苓丁 茯苓15 mm×15 mm×15 mm立方体: 干燥温度45、50、55、60、65 ℃; 风速4、6、8、10、12 m·s-1 干燥时间相对于热风干燥时间缩短了48.96%;相对于真空脉动干燥破碎率较高, 为62.68%, 干燥温度、风速对破碎率无显著性影响; 干燥活化能为29.45 kJ·mol-1 [27]
    光皮木瓜 干燥温度50、60、70 ℃; 切片厚度9、12、15 mm 干燥温度越高、切片厚度越薄, 干燥速率越快 [28]
    山楂 3 mm薄片: 干燥温度40、60、80、100 ℃; 风速10、11、12、13 m·s-1; 物料盒宽度90、130、170、210 mm; 喷嘴高度110、140、170、200 mm 干燥温度越高, 干燥速率越快; 100 ℃干燥时间最短为120 min, 但营养成分损失严重; 干燥温度对干燥时间影响较大, 风速、物料盒宽度和喷嘴高度的影响较小 [29]
    苦瓜片 干燥温度40、50、60、70、80 ℃; 风速9、10、11、12 m·s-1; 切片厚度2、3、4、5、6 mm 干燥过程为降速干燥; 风温越大、切片厚度越小, 物料的干燥速率越快, 但风速的影响远不如风温和切片厚度明显 [30]
    下载: 导出CSV

    表  3  真空脉动干燥技术在中草药干燥加工中的应用

    中草药类别 干燥条件 主要结论 参考文献
    枸杞 干燥温度50、55、60、65 ℃; 真空时间5、10、20、30 min; 常压时间2、4、8 min 干燥温度、常压时间和真空时间均对枸杞的干燥有显著影响, 当干燥温度60 ℃, 常压时间4 min, 真空时间10 min的干燥条件下, 干燥时间为284 min; 真空脉动干燥后的枸杞色泽鲜红 巨浩羽等[35]
    六味地黄丸 干燥温度50、60、70、80、90 ℃; 真空保持时间3、6、9、12、15 min; 常压保持时间2、4、8、12、16 min 干燥过程可分为短暂升速阶段和降速阶段; 真空脉动干燥比热风干燥更能减少有效成分损失, 同时降低丸剂的溶散时限; 最优工艺参数为: 真空保持时间5 min,常压保持时间7 min,干燥温度62 ℃ 曾丽华[36]
    大蒜 干燥温度55、60、65、70 ℃; 真空保持时间6、9、12、15 min; 蒜片厚度2、3、4、5 mm 当真空保持时间为15 min时, 蒜素含量最高; 蒜片真空脉动干燥最佳工艺参数为红外板温度65 ℃、真空保持时间为15 min、蒜片厚度为2 mm 乔宏柱等[37]
    生姜 干燥温度60、65、70、75 ℃; 真空时间5、10、15、20 min; 切片厚度3、5、7、9 mm 真空时间、干燥温度和切片厚度均对干燥过程有显著性影响; 复水比随着真空时间的升高而升高, 随干燥温度的升高而降低; 干燥温度70 ℃, 真空时间10 min, 常压时间5 min, 切片厚度3 mm, 干燥时间最短为300 min Wang等[38]
    山药片 切片厚度3、5、7 mm; 真空时间5、10 min; 常压时间1、2、4、6 min 升高干燥温度和减小切片厚度提高干燥效率, 真空阶段内物料温度下降, 常压时间内物料温度上升。 Xie等[39]
    下载: 导出CSV

    表  4  中短波红外干燥技术在中草药干燥加工中的应用

    中草药类别 干燥条件 主要结论 参考文献
    白果 不同辐射温度60、70、80、90 ℃, 辐射距离100 mm, 风速8.0 m·s-1 白果整个干燥过程只有一个降速干燥阶段; 干燥温度从60 ℃升高到80 ℃, 干燥时间显著减少; 干燥温度从80 ℃升高到90 ℃, 白果干燥时间没有显著性差异 [41]
    番木瓜 干燥温度(60、70、80、90 ℃)和不同红外功率(675、1 125、1 575、2 025 W) 干燥温度对番木瓜干燥速率的影响较大, 红外功率对番木瓜干燥速率影响较小; 干燥温度和红外功率越高耗时越短, 番木瓜中短波红外干燥主要为降速过程 [42]
    红枣 干燥温度60、70、80、90 ℃ 相同干燥温度下中短波红外干燥比热风干燥的干燥时间缩短了33%~83%。中短波红外干燥可提高红枣片的干燥效率和品质 [43]
    光皮木瓜 切片厚度12 mm, 干燥温度50、60、70 ℃ 干燥温度越大, 干燥速率越快; 干燥过程为降速干燥过程, 相同干燥温度下干燥速率低于气体射流冲击干燥。 [28]
    下载: 导出CSV

    表  5  半理论模型

    求解方法 模型名称 模型方程
    牛顿冷却定律 Lewis model MR=exp(-kt)
    Page model MR=exp(-ktn)
    Modified Page model MR=exp[(-kt)n]
    MR=exp[-(kt)n]
    MR=exp[-(-kt)n]
    MR=a exp[-(ktn)]
    MR=exp[-(ktn)]
    MR=exp(ktn)
    Otsura et al. model. MR=1-exp[-(ktn)]
    费克第二定律 Simplified Fick's model MR=k exp[-c/(t/L2)]
    Henderson and Pabis model MR=a exp(-kt)
    Logaritmic model MR=a exp(-kt)+c
    Two-term model MR=a exp(-k0t)+b exp(-k1t)
    MR=a exp(-kt)+(1-a)exp(-kat)
    Two term exponentialMR=a exp(-ktn)+bt
    Midilli et al. model MR=exp(-ktn)+bt
    Modified Midilli et al. model MR=exp(-kt)+bt
    注: MR为水分比; t为干燥时间, s; L为切片厚度, mm; 其余为模型中的待定参数。
    下载: 导出CSV

    表  6  经验模型

    干燥模型 模型方程
    Wang and Singh model MR=1+at+bt2
    Weibull distribution models MR=exp[-(t/α)β]
    Aghbashlo model MR=exp[-k1t/(1+k2t)]
    Three-parameter model MR=a exp[-(kt)n]
    Parabolic model MR=a+bt+ct2
    Power law model MR=atb
    下载: 导出CSV
  • [1] 及华, 张海新. 我国中药材种类介绍[J]. 现代农村科技, 2018(12): 106-107. doi: 10.3969/j.issn.1674-5329.2018.12.079
    [2] 徐晚秀, 李静, 宋飞虎, 等. 中草药干燥现状[J]. 中药与临床, 2015, 6(2): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-LCZY201502034.htm
    [3] 任迪峰, 毛志怀. 我国中草药干燥的现状及发展趋势[J]. 农业工程学报, 2001, 17(2): 5-8. doi: 10.3321/j.issn:1002-6819.2001.02.002
    [4] 王海洋, 吕建民. 中草药产地初加工技术探讨[J]. 农家参谋, 2017(12): 92. https://www.cnki.com.cn/Article/CJFDTOTAL-NJCM201712087.htm
    [5] 郑娅, 颉敏华, 张芳, 等. 干燥技术在中药材产地初加工中的应用[J]. 甘肃农业科技, 2017(3): 71-74. doi: 10.3969/j.issn.1001-1463.2017.03.022
    [6] 张欣蕊. 中药材干燥技术现状及发展趋势[J]. 临床医药文献电子杂志, 2020, 7(34): 194. https://www.cnki.com.cn/Article/CJFDTOTAL-LCWX202034156.htm
    [7] 王伟影, 范蕾. 不同采收时期及干燥方法对栀子中栀子苷含量的影响[J]. 中国药师, 2012, 15(6): 811-813. doi: 10.3969/j.issn.1008-049X.2012.06.022
    [8] 巨浩羽, 赵海燕, 于贤龙, 等. 基于温湿度控制的箱式果蔬热风干燥机设计[J]. 食品与机械, 2020, 36(7): 97-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SPJX202007020.htm
    [9] 巨浩羽, 赵士豪, 赵海燕, 等. 干燥介质相对湿度对西洋参根干燥特性和品质的影响[J]. 中草药, 2020, 51(3): 631-638. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202003012.htm
    [10] JU HY, ZHAO SH, MUJUMDAR AS, et al. Step-down relative humidity convective air drying strategy to enhance drying kinetics, efficiency, and quality of American ginseng root (Panax quinquefolium)[J]. Dry Technol, 2020, 38(7): 903-916. doi: 10.1080/07373937.2019.1597373
    [11] 段素敏, 孔铭, 李秀杨, 等. 当归药材热风-微波联合干燥方法研究[J]. 中草药, 2016, 47(19): 3415-3419. doi: 10.7501/j.issn.0253-2670.2016.19.011
    [12] JU HY, ZHANG Q, MUJUMDAR AS, et al. Hot-air drying kinetics of yam slices under step change in relative humidity[J]. Int J Food Eng, 2016, 12(8): 783-792. doi: 10.1515/ijfe-2015-0340
    [13] 齐娅汝, 李远辉, 韩丽, 等. 二至丸热风干燥动力学及干燥过程数学模拟研究[J]. 中草药, 2017, 48(15): 3056-3063. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201715007.htm
    [14] 刘勇, 徐娜, 陈骏飞, 等. 不同干燥方法对三七药材外观性状与内在结构及其品质的影响[J]. 中草药, 2019, 50(23): 5714-5723. doi: 10.7501/j.issn.0253-2670.2019.23.011
    [15] ZHAO DD, WEI J, HAO JX, et al. Effect of sodium carbonate solution pretreatment on drying kinetics, antioxidant capacity changes, and final quality of wolfberry (Lycium barbarum) during drying[J]. LWT, 2019, 99: 254-261. doi: 10.1016/j.lwt.2018.09.066
    [16] OJEDIRAN JO, OKONKWO CE, ADEYI AJ, et al. Drying characteristics of yam slices (Dioscorea rotundata) in a convective hot air dryer: Application of ANFIS in the prediction of drying kinetics[J]. Heliyon, 2020, 6(3): e03555. doi: 10.1016/j.heliyon.2020.e03555
    [17] 陈衍男, 赵恒强, 卢丙, 等. 基于低场核磁共振技术的不同干燥过程中光皮木瓜水分迁移规律研究[J]. 中草药, 2018, 49(17): 4022-4028. doi: 10.7501/j.issn.0253-2670.2018.17.009
    [18] 巨浩羽, 赵士豪, 赵海燕, 等. 基于weibull分布函数的枸杞真空脉动干燥过程模拟及动力学研究[J]. 中草药, 2018, 49(22): 5313-5319. doi: 10.7501/j.issn.0253-2670.2018.22.014
    [19] XIE L, MUJUMDAR AS, FANG XM, et al. Far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD) of wolfberry(Lycium barbarum L. ): Effects on drying kinetics and quality attributes[J]. Food Bioprod Process, 2017, 102: 320-331. doi: 10.1016/j.fbp.2017.01.012
    [20] 吴中华, 李文丽, 赵丽娟, 等. 枸杞分段式变温热风干燥特性及干燥品质[J]. 农业工程学报, 2015, 31(11): 287-293. doi: 10.11975/j.issn.1002-6819.2015.11.041
    [21] DAVIDSON VJ, LI X, BROWN RB. Forced-air drying of ginseng root: 1. Effects of air temperature on quality[J]. J Food Eng, 2004, 63(4): 361-367. doi: 10.1016/j.jfoodeng.2003.08.014
    [22] 巨浩羽, 肖红伟, 郑霞, 等. 干燥介质相对湿度对胡萝卜片热风干燥特性的影响[J]. 农业工程学报, 2015, 31(16): 296-304. doi: 10.11975/j.issn.1002-6819.2015.16.040
    [23] 陆学中, 刘亚男, 张德榜, 等. 高湿预处理对怀山药热风干燥特性及复水性的影响[J]. 食品与机械, 2017, 33(11): 147-151, 183. https://www.cnki.com.cn/Article/CJFDTOTAL-SPJX201711036.htm
    [24] JU HY, EL-MASHAD HM, FANG XM, et al. Drying characteristics and modeling of yam slices under different relative humidity conditions[J]. Dry Technol, 2016, 34(3): 296-306. doi: 10.1080/07373937.2015.1052082
    [25] 孟建升, 蒋俊春, 郑志安, 等. 3种干燥方式对山药片干燥动力学和品质的影响[J]. 中草药, 2019, 50(11): 2575-2582. doi: 10.7501/j.issn.0253-2670.2019.11.011
    [26] 曾祥媛, 张建, 赵武奇, 等. 党参根气体射流冲击干燥特性和干燥模型[J]. 海南师范大学学报(自然科学版), 2018, 31(3): 237-249. https://www.cnki.com.cn/Article/CJFDTOTAL-HNXZ201803001.htm
    [27] 张卫鹏, 高振江, 肖红伟, 等. 基于weibull函数不同干燥方式下的茯苓干燥特性[J]. 农业工程学报, 2015, 31(5): 317-324. doi: 10.3969/j.issn.1002-6819.2015.05.044
    [28] 巨浩羽, 赵海燕, 张菊, 等. 基于dincer模型不同干燥方式下光皮木瓜干燥特性研究[J]. 中草药, 2020, 51(15): 3911-3921. doi: 10.7501/j.issn.0253-2670.2020.15.010
    [29] 李文峰, 金欢欢, 肖旭霖. 山楂气体射流冲击干燥特性及干燥模型[J]. 食品科学, 2014, 35(9): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201409015.htm
    [30] 薛珊, 赵武奇, 高贵田, 等. 苦瓜片气体射流冲击干燥特性及干燥模型[J]. 中国农业科学, 2017, 50(4): 743-754. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201704018.htm
    [31] 娄正, 刘清, 师建芳, 等. 红枣气体射流冲击干燥收缩特性研究[J]. 农业机械学报, 2014, 45(S1): 241-246. doi: 10.6041/j.issn.1000-1298.2014.S0.039
    [32] 代建武, 肖红伟, 谢龙, 等. 倾斜料盘式气体射流冲击干燥机设计与试验[J]. 农业机械学报, 2015, 46(7): 238-244. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201507035.htm
    [33] 姚雪东, 肖红伟, 高振江, 等. 气流冲击式转筒干燥机设计与试验[J]. 农业机械学报, 2009, 40(10): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200910016.htm
    [34] WANG J, MUJUMDAR AS, WANG H, et al. Effect of drying method and cultivar on sensory attributes, textural profiles, and volatile characteristics of grape raisins[J]. Dry Technol, 2021, 39(4): 495-506. doi: 10.1080/07373937.2019.1709199
    [35] 巨浩羽, 赵士豪, 赵海燕, 等. 基于weibull分布函数的枸杞真空脉动干燥过程模拟及动力学研究[J]. 中草药, 2018, 49(22): 5313-5319. doi: 10.7501/j.issn.0253-2670.2018.22.014
    [36] 曾丽华. 基于真空脉动干燥的六味地黄丸干燥过程研究[D]. 南昌: 江西中医药大学, 2019.
    [37] 乔宏柱, 高振江, 王军, 等. 大蒜真空脉动干燥工艺参数优化[J]. 农业工程学报, 2018, 34(5): 256-263. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201805034.htm
    [38] WANG J, BAI TY, WANG D, et al. Pulsed vacuum drying of Chinese ginger(Zingiber officinale Roscoe)slices: Effects on drying characteristics, rehydration ratio, water holding capacity, and microstructure[J]. Dry Technol, 2019, 37(3): 301-311. doi: 10.1080/07373937.2017.1423325
    [39] XIE YC, GAO ZJ, LIU YH, et al. Pulsed vacuum drying of rhizoma dioscoreae slices[J]. LWT, 2017, 80: 237-249. doi: 10.1016/j.lwt.2017.02.016
    [40] 薛令阳, 王书茂, MUJUMDAR AS, 等. 基于干燥均匀性的真空脉动干燥加热控制技术[J]. 农业机械学报, 2019, 50(4): 317-325. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201904036.htm
    [41] 白竣文, 彭泽康, 吴学岑, 等. 中短波红外干燥白果的色泽变化预测及品质研究[J]. 食品工业科技, 2020, 41(12): 269-274, 280. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ202012044.htm
    [42] 高鹤, 易建勇, 毕金峰, 等. 番木瓜中短波红外干燥特性[J]. 食品科学, 2015, 36(7): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201507006.htm
    [43] CHEN QQ, BI JF, WU XY, et al. Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short- and medium-wave infrared radiation[J]. LWT Food Sci Technol, 2015, 64(2): 759-766. doi: 10.1016/j.lwt.2015.06.071
    [44] 张卫鹏, 肖红伟, 高振江, 等. 中短波红外联合气体射流干燥提高茯苓品质[J]. 农业工程学报, 2015, 31(10): 269-276. doi: 10.11975/j.issn.1002-6819.2015.10.036
    [45] 谢永康, 林雅文, 朱广飞, 等. 基于加热均匀性的射频干燥系统结构优化与试验[J]. 农业工程学报, 2018, 34(5): 248-255. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201805033.htm
    [46] TIWARI G, WANG S, TANG J, et al. Analysis of radio frequency(RF)power distribution in dry food materials[J]. J Food Eng, 2011, 104(4): 548-556. doi: 10.1016/j.jfoodeng.2011.01.015
    [47] ERBAY Z, ICIER F. A review of thin layer drying of foods: Theory, modeling, and experimental results[J]. Crit Rev Food Sci Nutr, 2010, 50(5): 441-464. doi: 10.1080/10408390802437063
    [48] ERTEKIN C, FIRAT MZ. A comprehensive review of thin-layer drying models used in agricultural products[J]. Crit Rev Food Sci Nutr, 2017, 57(4): 701-717. doi: 10.1080/10408398.2014.910493
    [49] ONWUDE DI, HASHIM N, ABDAN K, et al. Modelling of coupled heat and mass transfer for combined infrared and hot-air drying of sweet potato[J]. J Food Eng, 2018, 228: 12-24. doi: 10.1016/j.jfoodeng.2018.02.006
    [50] 王学成, 康超超, 伍振峰, 等. 二至丸热风干燥过程温度均匀性模拟与实验[J]. 中草药, 2020, 51(5): 1226-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202005020.htm
    [51] JU HY, LAW CL, FANG XM, et al. Drying kinetics and evolution of the sample's core temperature and moisture distribution of yam slices (Dioscorea alata L. ) during convective hot-air drying[J]. Dry Technol, 2016, 34(11): 1297-1306. doi: 10.1080/07373937.2015.1105814
    [52] KHAN MIH, WELSH Z, GU YT, et al. Modelling of simultaneous heat and mass transfer considering the spatial distribution of air velocity during intermittent microwave convective drying[J]. Int J Heat Mass Transf, 2020, 153: 119668. doi: 10.1016/j.ijheatmasstransfer.2020.119668
    [53] 胡居吾. 蔓三七叶热泵-热风联合干燥特征与模型化研究[J]. 生物化工, 2020, 6(4): 14-17, 24. doi: 10.3969/j.issn.2096-0387.2020.04.004
    [54] MARABI A, LIVINGS S, JACOBSON M, et al. Normalized Weibull distribution for modeling rehydration of food particulates[J]. Eur Food Res Technol, 2003, 217(4): 311-318. doi: 10.1007/s00217-003-0719-y
    [55] 林冰, 孙悦, 廖力, 等. 4种藤类中药材干燥模型、动力学及有效成分稳定性研究[J]. 中草药, 2018, 49(13): 3001-3008. doi: 10.7501/j.issn.0253-2670.2018.13.008
    [56] MIRANDA M, VEGA-GÁLVEZ A, GARCíA P, et al. Effect of temperature on structural properties of Aloe vera(Aloe barbadensis Miller)gel and Weibull distribution for modelling drying process[J]. Food Bioprod Process, 2010, 88(2/3): 138-144. http://www.researchgate.net/profile/Karina_Di_Scala/publication/240442041_Effect_of_temperature_on_structural_properties_of_Aloe_vera_(_Aloe_barbadensis_Miller)_gel_and_Weibull_distribution_for_modelling_drying_process/links/5549feda0cf2a0d4f2974611.pdf
    [57] TAMARIT-PINO Y, BATíAS-MONTES JM, SEGURA-PONCE LA, et al. Effect of electrohydrodynamic pretreatment on drying rate and rehydration properties of Chilean sea cucumber (Athyonidium chilensis)[J]. Food Bioprod Proc, 2020, 123: 284-295. doi: 10.1016/j.fbp.2020.07.012
    [58] 万芳新, 李武强, 罗燕, 等. 超声预处理对枸杞远红外真空干燥特性及品质的影响[J]. 中草药, 2020, 51(18): 4654-4663. doi: 10.7501/j.issn.0253-2670.2020.18.008
    [59] 李武强, 万芳新, 罗燕, 等. 当归切片远红外干燥特性及动力学研究[J]. 中草药, 2019, 50(18): 4320-4328. doi: 10.7501/j.issn.0253-2670.2019.18.010
    [60] 李波, 王明伟, 强正泽, 等. 基于低温与回潮条件的当归干燥weibull函数模拟及其干燥特性研究[J]. 中草药, 2019, 50(13): 3052-3057. doi: 10.7501/j.issn.0253-2670.2019.13.009
    [61] 张雪峰. 黄芪热风干燥机理及能效评价分析[D]. 重庆: 西南大学, 2020.
    [62] 黄敬, 朱文学, 刘云宏, 等. 基于weibull分布函数的百合真空远红外干燥过程模拟及应用[J]. 食品与机械, 2017, 33(5): 71-76, 82. https://www.cnki.com.cn/Article/CJFDTOTAL-SPJX201705018.htm
    [63] 卢道会, 李敏, 吴发明, 等. 中药材商品分类标准的研究[C]//第二届全国中药商品学术大会论文集. 陇西, 2010: 265-269.
    [64] 陈亚玲, 任丽娟, 王丽, 等. 生物碱类化合物抗结核病的研究进展[J]. 中草药, 2020, 50(3): 799-805. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202003033.htm
    [65] 钱桂敏, 王平, 郭峰. 不同干燥方法对金钗石斛鲜品中石斛碱含量的影响[J]. 辽宁中医药大学学报, 2012(1): 190-191. https://www.cnki.com.cn/Article/CJFDTOTAL-LZXB201201086.htm
    [66] 郭鑫, 乔宇航, 朱春璐, 等. 微波真空干燥对胆黄连配方颗粒中间体生物碱类成分的影响研究[J]. 中南药学, 2020, 18(4): 676-679. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYX202004033.htm
    [67] 覃冬杰, 黄瑞松, 刘华钢, 等. 不同干燥方法对钩藤药材中钩藤碱含量的影响[J]. 广西医科大学学报, 2011, 28(3): 345-347. doi: 10.3969/j.issn.1005-930X.2011.03.006
    [68] 张颖, 刘理南, 赵燕清. 钩藤提取工艺研究[J]. 中成药, 2000, 22(5): 331-332. doi: 10.3969/j.issn.1001-1528.2000.05.006
    [69] 刘钊圻, 叶萌, 林海建, 等. 黄柏加工方法的优化研究[J]. 林业实用技术, 2007(6): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-LYKT200706004.htm
    [70] 刘环香, 周本宏, 冯兰珠, 等. 不同干燥方法对黄连中小檗碱含量的影响[J]. 中国中药杂志, 1993, 18(5): 282-283. doi: 10.3321/j.issn:1001-5302.1993.05.009
    [71] 孙欣光, 张洁, 庞旭, 等. 天然黄酮苷的代谢途径研究进展[J]. 中草药, 2020, 51(11): 3078-3089. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202011028.htm
    [72] MASEKO I, MABHAUDHI T, NCUBE B, et al. Postharvest drying maintains phenolic, flavonoid and gallotannin content of some cultivated African leafy vegetables[J]. Sci Hortic, 2019, 255: 70-76. doi: 10.1016/j.scienta.2019.05.019
    [73] 姜珊, 马青琳, 张康华, 等. 不同干燥方法对金银花叶主要成分的影响[J]. 中国饲料, 2020(11): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SLGZ202011005.htm
    [74] LOU SN, LAI YC, HUANG JD, et al. Drying effect on flavonoid composition and antioxidant activity of immature kumquat[J]. Food Chem, 2015, 171: 356-363. doi: 10.1016/j.foodchem.2014.08.119
    [75] 顾熟琴, 盛文军, 卢大新. 热风干燥和微波干燥对油枣总黄酮含量影响的研究[J]. 食品科学, 2004, 25(11): 154-157. doi: 10.3321/j.issn:1002-6630.2004.11.034
    [76] 邢颖, 张月, 徐怀德, 等. 不同干燥方法对生姜叶活性成分和抗氧化活性的影响[J]. 食品工业科技, 2020, 41(18): 75-80, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ202018012.htm
    [77] 常秀莲, 王长海, 冯咏梅, 等. 库拉索芦荟凝胶黏度及多糖的热稳定性研究[J]. 精细化工, 2004, 21(7): 496-498, 509. doi: 10.3321/j.issn:1003-5214.2004.07.005
    [78] 方伟, 胡慧, 刘慧芹, 等. 不同干燥温度对天麻主要成分含量的影响[J]. 怀化学院学报, 2019, 38(11): 1-5. doi: 10.3969/j.issn.1671-9743.2019.11.001
    [79] AHMADI S, SHEIKH-ZEINODDIN M, SOLEIMANIAN-ZAD S, et al. Effects of different drying methods on the physicochemical properties and antioxidant activities of isolated acorn polysaccharides[J]. LWT, 2019, 100: 1-9. doi: 10.1016/j.lwt.2018.10.027
    [80] DENG LZ, PAN ZL, ZHANG Q, et al. Effects of ripening stage on physicochemical properties, drying kinetics, pectin polysaccharides contents and nanostructure of apricots[J]. Carbohydr Polym, 2019, 222: 114980. doi: 10.1016/j.carbpol.2019.114980
    [81] 邱华振, 杨昳津, 胡健, 等. 金银花醇提物对水溶性红曲色素的护色作用研究[J]. 食品工业科技, 2019, 40(15): 178-183. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201915029.htm
    [82] 宗侃侃, 于国光, 刘玉红, 等. 浙贝母最佳干燥条件的选择[J]. 浙江农业科学, 2020, 61(11): 2250-2252. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNX202011018.htm
    [83] ONG SP, LAW CL. Drying kinetics and antioxidant phytochemicals retention of salak fruit under different drying and pretreatment conditions[J]. Dry Technol, 2011, 29(4): 429-441. doi: 10.1080/07373937.2010.503332
    [84] KUROZAWA LE, TERNG I, HUBINGER MD, et al. Ascorbic acid degradation of Papaya during drying: Effect of process conditions and glass transition phenomenon[J]. J Food Eng, 2014, 123: 157-164. doi: 10.1016/j.jfoodeng.2013.08.039
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  919
  • HTML全文浏览量:  86
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-27
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2021-09-10
  • 发布日期:  2021-09-15

目录

    /

    返回文章
    返回