留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

补骨脂富含的异戊烯基成分对CYP1A1活性的影响及分子对接验证

秦子飞 王培乐 邢晗 韩立 卞华 杨晶 张晓坚

秦子飞, 王培乐, 邢晗, 韩立, 卞华, 杨晶, 张晓坚. 补骨脂富含的异戊烯基成分对CYP1A1活性的影响及分子对接验证[J]. 南京中医药大学学报, 2021, 37(5): 750-159. doi: 10.14148/j.issn.1672-0482.2021.0750
引用本文: 秦子飞, 王培乐, 邢晗, 韩立, 卞华, 杨晶, 张晓坚. 补骨脂富含的异戊烯基成分对CYP1A1活性的影响及分子对接验证[J]. 南京中医药大学学报, 2021, 37(5): 750-159. doi: 10.14148/j.issn.1672-0482.2021.0750
QIN Zi-fei, WANG Pei-le, XING Han, HAN Li, BIAN Hua, YANG Jing, ZHANG Xiao-jian. Effects of Prenylated Compounds Derived from Psoralea Corylifolia against Human CYP1A1 and Corresponding Molecular Docking Validation[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(5): 750-159. doi: 10.14148/j.issn.1672-0482.2021.0750
Citation: QIN Zi-fei, WANG Pei-le, XING Han, HAN Li, BIAN Hua, YANG Jing, ZHANG Xiao-jian. Effects of Prenylated Compounds Derived from Psoralea Corylifolia against Human CYP1A1 and Corresponding Molecular Docking Validation[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(5): 750-159. doi: 10.14148/j.issn.1672-0482.2021.0750

补骨脂富含的异戊烯基成分对CYP1A1活性的影响及分子对接验证

doi: 10.14148/j.issn.1672-0482.2021.0750
基金项目: 

河南省高等学校重点科研项目 20A350012

河南省张仲景方药与免疫调节重点实验室开放课题 KFKT202001

国家自然科学基金青年基金 81703799

详细信息
    作者简介:

    秦子飞, 男, 主管药师, E-mail: qzf1989@163.com

    通讯作者:

    卞华, 男, 教授, 主要从事中医内科学研究, E-mail: biancrown@163.com

  • 中图分类号: R285.5

Effects of Prenylated Compounds Derived from Psoralea Corylifolia against Human CYP1A1 and Corresponding Molecular Docking Validation

  • 摘要: 目的  考察补骨脂富含的异戊烯基成分对CYP1A1活性的影响, 并采用分子对接技术进行验证。方法  以7-乙氧基试卤灵为CYP1A1的探针底物, 采用超高效液相串联三重四级杆质谱(UHPLC-TQD-MS)对代谢产物试卤灵的质谱条件进行优化; 应用CYP1A1体外孵育体系, 评价补骨脂富含的补骨脂二氢黄酮、补骨脂定、异补骨脂查尔酮、异补骨脂二氢黄酮和补骨脂二氢黄酮甲醚在不同浓度(1、10、100 μmol·L-1)对CYP1A1活性的影响; 采用不同的抑制动力学模型计算相关的抑制常数(Ki); 应用Autodock 4.2软件, 将活性成分与CYP1A1进行分子对接。结果  初筛结果显示, 补骨脂二氢黄酮、补骨脂定、异补骨脂查尔酮、异补骨脂二氢黄酮、补骨脂二氢黄酮甲醚对CYP1A1均表现出抑制活性, IC50值分别为0.28、0.49、0.36、2.24、4.07 μmol·L-1; 根据最小赤池信息量准则(AIC)和施瓦茨信息准则值(SC)即为最佳模型的原则, 补骨脂二氢黄酮和异补骨脂查尔酮对CYP1A1的抑制为竞争性抑制, Ki常数分别为0.12、0.23 μmol·L-1; 补骨脂定对CYP1A1表现出非竞争性抑制, 抑制常数Ki为0.59 μmol·L-1; 分子对接结果显示, 补骨脂二氢黄酮和异补骨脂查尔酮与CYP1A1蛋白之间均能产生氢键、π-π键以及疏水作用, 结合自由能分别为-10.145、-8.286 kcal·mol-1(1 kcal=4.2 kJ), 这可能是它们与CYP1A1亲和力较强进而产生强抑制活性的原因。结论  补骨脂富含的异戊烯基成分是CYP1A1强抑制剂(IC50 < 5 μmol·L-1); 异戊烯基成分C环1位和2位脱水开环会增加对CYP1A1的抑制活性; A环C-6位异戊烯基取代的化合物比C-8位取代的化合物表现出更强的CYP1A1抑制活性; A环7-OH甲基化会减弱CYP1A1的抑制活性; 分子对接结果也证实了补骨脂二氢黄酮和异补骨脂查尔酮与CYP1A1有较强的亲和力。

     

  • 图  1  补骨脂富含的异戊烯基成分的结构

    图  2  补骨脂提取物及5个异戊烯基成分对 CYP1A1 的抑制活性

    图  3  补骨脂提取物及5个异戊烯基成分对CYP1A1的抑制曲线和IC50值(x±s, n=3)

    图  4  补骨脂二氢黄酮、补骨脂定和异补骨脂查尔酮对CYP1A1介导的7-乙氧基试卤灵去乙氧基活性的抑制作用

    图  5  α-萘黄酮与CYP1A1的氨基酸残基相结合的活性位点(A)、氢键作用(B)与疏水作用(C)

    图  6  补骨脂二氢黄酮与CYP1A1的氨基酸残基相结合的活性位点(A)、氢键作用(B)与疏水作用(C)

    图  7  异补骨脂查尔酮与CYP1A1的氨基酸残基相结合的活性位点(A)、氢键作用(B)与疏水作用(C)

    图  8  补骨脂异戊烯基成分对CYP1A1抑制活性的结构选择性

    表  1  补骨脂异戊烯基成分对CYP1A1抑制作用的动力学参数(x±s, n=3)

    化合物 IC50/(μmol·L-1) 类型 Ki/(μmol·L-1) α R2 AIC SC
    补骨脂提取物 14.97±2.17#
    补骨脂二氢黄酮 0.28±0.05 竞争性 0.12±0.02 0.988 8 -100.21 -97.22
    非竞争性 0.26±0.02 0.983 5 -92.32 -89.33
    混合型 0.14±0.03 8.97±11.26 0.989 4 -99.23 -95.25
    补骨脂定 0.49±0.25 竞争性 0.28±0.05 0.965 8 -82.00 -79.01
    非竞争性 0.59±0.04 0.984 7 -98.03 -95.05
    混合型 0.87±0.29 0.48±0.27 0.986 0 -97.89 -93.91
    异补骨脂查尔酮 0.36±0.02 竞争性 0.23±0.03 0.983 5 -110.90 -107.91
    非竞争性 0.60±0.06 0.970 6 -99.42 -96.44
    混合型 0.24±0.05 36.49±123.24 0.983 5 -109.01 -105.03
    异补骨脂二氢黄酮 2.24±0.70
    补骨脂二氢黄酮甲醚 4.07±0.85
    注: #代表IC50值的单位是mg·mL-1
    下载: 导出CSV
  • [1] HUANG B, BAO J, CAO YR, et al. Cytochrome P450 1A1(CYP1A1) catalyzes lipid peroxidation of oleic acid-induced HepG2 cells[J]. Biochemistry, 2018, 83(5): 595-602. doi: 10.1134%2FS0006297918050127.pdf
    [2] SHI Z, DRAGIN N, GALVEZ-PERALTA M, et al. Organ-specific roles of CYP1A1 during detoxication of dietary benzo[a]Pyrene[J]. Mol Pharmacol, 2010, 78(1): 46-57. doi: 10.1124/mol.110.063438
    [3] XU H, ZHANG X, YE Y, et al. Bisphenol A affects estradiol metabolism by targeting CYP1A1 and CYP19A1 in human placental JEG-3 cells[J]. Toxicol in Vitro, 2019, 61: 104615. doi: 10.1016/j.tiv.2019.104615
    [4] 宁青, 刘中秋, 韦英杰, 等. 基于斑马鱼在体模型高效筛选补骨脂配伍减毒研究[J]. 南京中医药大学学报, 2021, 37(1): 54-61. http://xb.njucm.edu.cn/jnutcmns/ch/reader/view_abstract.aspx?file_no=zr20210111&flag=1
    [5] LIM SH, HA TY, KIM SR, et al. Ethanol extract of Psoralea corylifolia L. and its main constituent, bakuchiol, reduce bone loss in ovariectomised Sprague-Dawley rats[J]. Br J Nutr, 2009, 101(7): 1031-1039. http://www.onacademic.com/detail/journal_1000038832336510_e86d.html
    [6] 颜翠萍, 翁泽斌, 吴育, 等. 青娥丸盐炙品与生品抗去卵巢诱导的骨质疏松效应的比较研究[J]. 南京中医药大学学报, 2014, 30(5): 438-442. doi: 10.3969/j.issn.1000-5005.2014.05.012
    [7] TANG XY, DAI ZQ, SHI DF, et al. An UHPLC-MS/MS method for simultaneous determination of ten sex steroid hormones in ovariectomy-induced osteoporosis rat and its application in discovery of sex steroid hormones regulatory components of Xian-Ling-Gu-Bao capsule[J]. J Pharm Biomed Anal, 2021, 195: 113888. doi: 10.1016/j.jpba.2020.113888
    [8] YAO ZH, QIN ZF, CHENG H, et al. Simultaneous quantification of multiple representative components in the Xian-Ling-gu-Bao capsule by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry[J]. Molecules, 2017, 22(6): 927. doi: 10.3390/molecules22060927
    [9] KIM SJ, OH HC, KIM YC, et al. Selective inhibition of bakuchicin isolated from Psoralea corylifolia on CYP1A in human liver microsomes[J]. Evid Based Complement Alternat Med, 2016, 2016: 5198743. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763008/pdf/ECAM2016-5198743.pdf
    [10] WANG S, DUNLAP TL, HOWELL CE, et al. Hop (Humulus lupulus L. ) extract and 6-prenylnaringenin induce P450 1A1 catalyzed estrogen 2-hydroxylation[J]. Chem Res Toxicol, 2016, 29(7): 1142-1150. doi: 10.1021/acs.chemrestox.6b00112
    [11] WANG PL, YAO ZH, ZHANG FX, et al. Identification of metabolites of Psoraleae fructus in rats by ultra performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis[J]. J Pharm Biomed Anal, 2015, 112: 23-35. doi: 10.1016/j.jpba.2015.03.026
    [12] GAO L, QIN ZF, ZHANG BB, et al. An investigation of the metabolic activity, isozyme contribution, species differences and potential drug-drug interactions of PI-103, and the identification of efflux transporters for PI-103-O-glucuronide in HeLa1A9 cells[J]. RSC Adv, 2020, 10(16): 9610-9622. doi: 10.1039/C9RA09906A
    [13] WALSH AA, SZKLARZ GD, SCOTT EE. Human cytochrome P450 1A1 structure and utility in understanding drug and xenobiotic metabolism[J]. J Biol Chem, 2013, 288(18): 12932-12943. doi: 10.1074/jbc.M113.452953
    [14] SANTES-PALACIOS R, MARROQUIN-PEREZ AL, HERNANDEZ-OJEDA SL, et al. Human CYP1A1 inhibition by flavonoids[J]. Toxicol in Vitro, 2020, 62: 104681. doi: 10.1016/j.tiv.2019.104681
    [15] LI SN, CAO YF, SUN XY, et al. Hydroxy metabolites of polychlorinated biphenyls (OH-PCBs) exhibit inhibitory effects on UDP-glucuronosyltransferases(UGTs)[J]. Chemosphere, 2018, 212: 513-522. doi: 10.1016/j.chemosphere.2018.08.040
    [16] YAO ZH, QIN ZF, HE LL, et al. Identification, bioactivity evaluation and pharmacokinetics of multiple components in rat serum after oral administration of Xian-Ling-Gu-Bao capsule by ultra performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1041/1042: 104-112. doi: 10.1016/j.jchromb.2016.12.026
    [17] ZHOU ZX, YANG L, CHENG LY, et al. Simultaneous characterization of multiple Psoraleae fructus bioactive compounds in rat plasma by ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry for application in sex-related differences in pharmacokinetics[J]. J Sep Sci, 2020, 43(14): 2804-2816. doi: 10.1002/jssc.202000286
    [18] YANG YF, ZHANG YB, CHEN ZJ, et al. Plasma pharmacokinetics and cerebral nuclei distribution of major constituents of Psoraleae fructus in rats after oral administration[J]. Phytomedicine, 2018, 38: 166-174. doi: 10.1016/j.phymed.2017.12.002
    [19] FENG F, JIANG XN, QIU JY, et al. Development of an UPLC-MS/MS assay to determine psoralidin in rat plasma and its application in a pharmacokinetic study after intragastric administration[J]. Acta Chromatogr, 2020, 32(4): 215-218. doi: 10.1556/1326.2019.00679
    [20] LI Y, XU C, XU J, et al. Characterization of metabolic activity, isozyme contribution and species differences of bavachin, and identification of efflux transporters for bavachin-O-glucuronide in HeLa1A1 cells[J]. J Pharm Pharmacol, 2020, 72(12): 1771-1786. doi: 10.1111/jphp.13324
    [21] 秦子飞, 张贝贝, 邢晗, 等. 补骨脂定的肝肠微粒体代谢动力学、代谢酶表型及种属差异研究[J]. 中国中药杂志, 2021, 46(13): 3410-3421. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202113025.htm
    [22] QIN Z, WANG P, DUAN S, et al. Potential determinants for metabolic fates and inhibitory effects of isobavachalcone involving in human cytochrome P450, UDP-glucuronosyltransferase enzymes, and efflux transporters[J]. J Pharm Sci, 2021, 110(5): 2285-2294. doi: 10.1016/j.xphs.2021.02.013
    [23] LI Y, XU J, XU C, et al. Metabolism and disposition of corylifol A from Psoralea corylifolia: Metabolite mapping, isozyme contribution, species differences and identification of efflux transporters for corylifol A-O-glucuronide in HeLa1A1 cells[J]. Xenobiotica, 2020, 50(8): 997-1008. doi: 10.1080/00498254.2020.1732496
    [24] XING H, YANG J, REN KD, et al. Investigation on the metabolic characteristics of isobavachin in Psoralea corylifolia L. (Bu-gu-Zhi) and its potential inhibition against human cytochrome P450s and UDP-glucuronosyltransferases[J]. J Pharm Pharmacol, 2020, 72(12): 1865-1878. doi: 10.1111/jphp.13337
    [25] LI XQ, XING H, QIN ZF, et al. Potential metabolism determinants and drug-drug interactions of a natural flavanone bavachinin[J]. RSC Adv, 2020, 10(58): 35141-35152. doi: 10.1039/D0RA06961B
    [26] JUNGMANN NA, LANG D, SALEH S, et al. In vitro-in vivo correlation of the drug-drug interaction potential of antiretroviral HIV treatment regimens on CYP1A1 substrate riociguat[J]. Expert Opin Drug Metab Toxicol, 2019, 15(11): 975-984. doi: 10.1080/17425255.2019.1681968
    [27] WANG XX, LV X, LI SY, et al. Identification and characterization of naturally occurring inhibitors against UDP-glucuronosyltransferase 1A1 in Fructus Psoraleae(Bu-gu-Zhi)[J]. Toxicol Appl Pharmacol, 2015, 289(1): 70-78. doi: 10.1016/j.taap.2015.09.003
    [28] LI A, GAO M, ZHAO N, et al. Acute liver failure associated with Fructus Psoraleae: A case report and literature review[J]. BMC Complement Altern Med, 2019, 19(1): 84. doi: 10.1186/s12906-019-2493-9
    [29] 刘亚蕾, 葛斐林, 朱敬肖, 等. 基于被动监测数据和医院病例的一种补骨脂制剂相关肝损伤再评价[J]. 中国中药杂志, 2019, 44(19): 4272-4276. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201919032.htm
    [30] ABU-HAYYEH S, PAPACLEOVOULOU G, LÖVGREN-SANDBLOM A, et al. Intrahepatic cholestasis of pregnancy levels of sulfated progesterone metabolites inhibit farnesoid X receptor resulting in a cholestatic phenotype[J]. Hepatology, 2013, 57(2): 716-726. doi: 10.1002/hep.26055
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  40
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-27
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2021-09-10
  • 发布日期:  2021-09-15

目录

    /

    返回文章
    返回