留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

菖蒲郁金汤对抽动秽语综合征模型大鼠突触体SNARE蛋白复合体的影响研究

冯鹏 孙治前 罗文珍 史正刚 李玉霞 吴丽萍 尚菁 田文霞 陈静

冯鹏, 孙治前, 罗文珍, 史正刚, 李玉霞, 吴丽萍, 尚菁, 田文霞, 陈静. 菖蒲郁金汤对抽动秽语综合征模型大鼠突触体SNARE蛋白复合体的影响研究[J]. 南京中医药大学学报, 2021, 37(5): 709-719. doi: 10.14148/j.issn.1672-0482.2021.0709
引用本文: 冯鹏, 孙治前, 罗文珍, 史正刚, 李玉霞, 吴丽萍, 尚菁, 田文霞, 陈静. 菖蒲郁金汤对抽动秽语综合征模型大鼠突触体SNARE蛋白复合体的影响研究[J]. 南京中医药大学学报, 2021, 37(5): 709-719. doi: 10.14148/j.issn.1672-0482.2021.0709
FENG Peng, SUN Zhi-qian, LUO Wen-zhen, SHI Zheng-gang, LI Yu-xia, WU Li-ping, SHANG Jing, TIAN Wen-xia, CHEN Jing. Effect of Changpu Yujin Decoction on Synaptosome SNARE Protein Complex in Tourette Syndrome Model Rats[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(5): 709-719. doi: 10.14148/j.issn.1672-0482.2021.0709
Citation: FENG Peng, SUN Zhi-qian, LUO Wen-zhen, SHI Zheng-gang, LI Yu-xia, WU Li-ping, SHANG Jing, TIAN Wen-xia, CHEN Jing. Effect of Changpu Yujin Decoction on Synaptosome SNARE Protein Complex in Tourette Syndrome Model Rats[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(5): 709-719. doi: 10.14148/j.issn.1672-0482.2021.0709

菖蒲郁金汤对抽动秽语综合征模型大鼠突触体SNARE蛋白复合体的影响研究

doi: 10.14148/j.issn.1672-0482.2021.0709
基金项目: 

国家自然科学基金 81960886

甘肃省高等学校创新基金 2020A-081

甘肃省重点研发计划项目 20YF3FA041

详细信息
    作者简介:

    冯鹏, 男, 讲师, 博士研究生, E-mail: sanzhichan@163.com

    通讯作者:

    史正刚, 男,教授, 博士生导师, 主要从事小儿精神、神经系统疾病研究,E-mail: szg@gszy.edu.cn

  • 中图分类号: R285.5

Effect of Changpu Yujin Decoction on Synaptosome SNARE Protein Complex in Tourette Syndrome Model Rats

  • 摘要: 目的  研究菖蒲郁金汤对抽动秽语综合征(Tourette syndrome, TS)模型大鼠突触体中SNARE蛋白复合体的调控作用, 揭示菖蒲郁金汤治疗TS的药效机制。方法  选择3周龄SD大鼠240只, 依据随机数字表将SD大鼠分为空白组(60只)和造模组(180只), 采用3, 3'-亚氨基二丙腈(IDPN)腹腔注射法制备TS动物模型。造模成功后, 再次随机将造模组大鼠分为模型组、硫必利组及菖蒲郁金汤组,每组60只。从造模完成后次日(即d0)开始灌胃给药, 空白组与模型组给予生理盐水, 其余各组给予相应药物, 每日1次, 连续给药4周。各组大鼠分别于第0、7、14、21、28天(即d0,d7,d14,d21,d28), 随机抽取12只大鼠, 麻醉后取纹状体, 采用Percoll密度梯度离心法制备纹状体中的突触体, 并在透射电镜下进行形态学鉴定。ELISA法检测纹状体多巴胺(Dopamine, DA)含量,qPCR和Western blot法检测突触体中SNAP-25、Syntaxin-1a和VAMP-2 mRNA及蛋白的表达, 免疫组织化学法检测纹状体上述指标的表达。结果  与空白组相比, 模型组各观察点纹状体中DA含量降低(P < 0.01), 突触体/纹状体中SNAP-25、Syntaxin-1a、VAMP-2 mRNA及蛋白的表达量显著降低(P < 0.05, P < 0.01);与模型组相比较, 硫必利组及菖蒲郁金汤组在干预期间的各观察点(d7,d14,d21,d28)纹状体中DA含量以及突触体/纹状体内SNAP-25、Syntaxin-1a、VAMP-2 mRNA及蛋白的表达量呈逐渐升高趋势。在治疗结束后(d28), 菖蒲郁金汤组突触体中SNAP-25、Syntaxin-1a、VAMP-2 mRNA, Syntaxin-1a蛋白及纹状体中SNAP-25、VAMP-2蛋白的表达高于硫必利组(P < 0.05, P < 0.01)。结论  菖蒲郁金汤通过调控SNAP-25、Syntaxin-1a、VAMP-2的表达促进DA的释放, 进而发挥其抗抽动的作用。

     

  • 图  1  突触体典型的“雪人”结构(×15 000)

    注: 箭头所指为突触间隙, ★为突触前膜, ▲为突触后膜。

    图  2  各组大鼠突触体中SNAP-25、Syntaxin-1a、VAMP-2 mRNA的表达情况

    注: 与空白组比较, **P < 0.01;与模型组比较, #P < 0.05, ##P < 0.01;与硫必利组比较, P < 0.05;与d0比较, P < 0.05, ★★P < 0.01。x±s, n=3。

    图  3  不同时间点各组大鼠突触体中目标蛋白的表达情况

    注: 与空白组比较, *P < 0.05, * *P < 0.01;与模型组比较, #P < 0.05, ##P < 0.01;与硫必利组比较, P < 0.05。x±s, n=3。

    图  4  各组大鼠纹状体SNAP-25蛋白的表达

    注: 与空白组比较, * *P < 0.01;与模型组比较, ##P < 0.01;与硫必利组比较, P < 0.05;与d0比较, P < 0.05, ★★P < 0.01。x±s, n=3。

    图  5  各组大鼠纹状体Syntaxin-1a蛋白的表达

    注: 与空白组比较, * *P < 0.01;与模型组比较, #P < 0.05, ##P < 0.01;与d0比较, P < 0.05, ★★P < 0.01。x±s, n=3。

    图  6  各组大鼠纹状体VAMP-2蛋白的表达

    注: 与空白组比较, * *P < 0.01;与模型组比较, #P < 0.05, ##P < 0.01;与硫必利组比较, ▲▲P < 0.01;与d0比较, P < 0.05, ★★P < 0.01。x±s, n=3。

    图  7  SNARE蛋白复合体介导囊泡膜与突触前膜融合示意图

    表  1  行为学评分表

    程度评分 刻板行为 运动行为
    0 无刻板运动 安静或正常活动
    1 旋转行为(顺时针或逆时针的旋转运动) 过度兴奋
    2 头颈部垂直运动过多 探究行为增加
    3 头颈部垂直运动过多加旋转行为 不停跑动
    4 头向侧摆, 合并头颈部垂直运动过多 不停跑动加惊跳
    下载: 导出CSV

    表  2  目的基因序列

    引物 引物序列(5'→3') 长度/bp
    VAMP-2 上游: CAGCTGGTGTGTAAGTGTCTTGGAG 160
    下游: GCAGCAGATCAGGCAGATGG
    SNAP-25 上游: CGGCATCATCGGAAACCTC 135
    下游: GCACGTTGGTTGGCTTCATC
    Syntaxin-1α 上游: GGCCGTCAAGTACCAGAGCAA 78
    下游: ATGATGATGCCCAGAATCACACA
    下载: 导出CSV

    表  3  各组大鼠纹状体DA含量(x±s, pg·mL-1, n=3)

    组别 d0 d7 d14 d21 d28
    空白组 104.34±3.76 103.88±4.78 105.02±5.95 104.38±4.45 103.62±4.52
    模型组 38.62±3.33** 38.63±3.58** 37.71±3.43** 41.76±2.87** 40.30±2.92**
    硫必利组 40.70±1.56** 72.45±4.28**##★★ 84.00±6.13**##★★ 87.55±6.20**##★★ 96.91±5.54**##★★
    菖蒲郁金汤组 39.93±1.96** 61.69±5.75**##▲▲★★ 73.48±7.61**##▲▲★★ 80.36±4.87**##★★ 94.95±2.82**##★★
    注: 与空白组比较, **P < 0.01;与模型组比较, ##P < 0.01;与硫必利组比较, ▲▲P < 0.01;与d0比较, ★★P < 0.01。
    下载: 导出CSV
  • [1] CAVANNA AE. Gilles de la Tourette syndrome as a paradigmatic neuropsychiatric disorder[J]. CNS Spectr, 2018, 23(3): 213-218. doi: 10.1017/S1092852918000834
    [2] RICKETTS EJ, WOLICKI SB, DANIELSON ML, et al. Academic, interpersonal, recreational, and family impairment in children with tourette syndrome and attention-deficit/hyperactivity disorder[J]. Child Psychiatry Hum Dev, 2021, 1: 1-13. doi: 10.1007/s10578-020-01111-4
    [3] HASSAN N, CAVANNA AE. The prognosis of Tourette syndrome: Implications for clinical practice[J]. Funct Neurol, 2012, 27(1): 23-27. http://www.functionalneurology.com/common/php/portiere.php?ID=c77b4424e3dbf8e75f1b511c69b20ad1
    [4] QI H, LIU R, ZHENG W, et al. Efficacy and safety of traditional Chinese medicine for Tourette's syndrome: A meta-analysis of randomized controlled trials[J]. Asian J Psychiatr, 2020, 47: 101853. doi: 10.1016/j.ajp.2019.101853
    [5] 冯鹏, 史正刚, 孙治前, 等. 中医药调控神经递质治疗多发性抽动症的研究进展[J]. 中药药理与临床, 2020, 36(2): 267-271. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYL202002059.htm
    [6] 高汉媛, 史正刚, 尚菁, 等. 菖蒲郁金汤对TS模型大鼠行为及纹状体单胺类神经递质的影响[J]. 西部中医药, 2017, 30(11): 28-32. doi: 10.3969/j.issn.1004-6852.2017.11.010
    [7] 高汉媛, 王维红, 尚菁, 等. 菖蒲郁金汤对多发性抽动症模型大鼠多巴胺代谢酶的影响[J]. 西部中医药, 2020, 33(9): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GSZY202009006.htm
    [8] 李玉霞, 史正刚, 赵彬元. 菖蒲郁金汤加减治疗小儿多发性抽动症60例临床观察[J]. 中医儿科杂志, 2015, 11(3): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYEZ201503014.htm
    [9] DIAMOND BI, REYES MG, BORISON R. A new animal model for Tourette syndrome[J]. Adv Neurol, 1982, 35: 221-225. http://europepmc.org/abstract/MED/6959491
    [10] AL KADASAH S, AL MUTAIRY A, SIDDIQUEI M, et al. Pentoxifylline attenuates iminodipropionitrile-induced behavioral abnormalities in rats[J]. Behav Pharmacol, 2009, 20(4): 356-360. doi: 10.1097/FBP.0b013e32832ec5ea
    [11] 徐叔云. 药理实验方法学[M]. 3版. 北京: 人民卫生出版社, 2002: 1861.
    [12] TAYLOR JR, MORSHED SA, PARVEEN S, et al. An animal model of Tourette's syndrome[J]. Am J Psychiatry, 2002, 159(4): 657-660. doi: 10.1176/appi.ajp.159.4.657
    [13] 周荣易. 安神定志灵及黄芩苷调控ADHD动物模型突触体多巴胺生成、释放及清除机制研究[D]. 南京: 南京中医药大学, 2018.
    [14] 孔德志, 李云杉, 张赛航, 等. 基于突触体蛋白质组学揭示人参对线粒体呼吸的抑制作用[J]. 中国药理学与毒理学杂志, 2018, 32(9): 685. https://www.cnki.com.cn/Article/CJFDTOTAL-YLBS201809032.htm
    [15] DUNKLEY PR, JARVIE PE, ROBINSON PJ. A rapid Percoll gradient procedure for preparation of synaptosomes[J]. Nat Protoc, 2008, 3(11): 1718-1728. doi: 10.1038/nprot.2008.171
    [16] 武忠弼. 超微病理诊断学[M]. 上海: 上海科学技术出版社, 2003: 26-27.
    [17] AHMAD F, LIU P. Synaptosome as a tool in Alzheimer's disease research[J]. Brain Res, 2020, 1746: 147009. doi: 10.1016/j.brainres.2020.147009
    [18] CALIGIORE D, MANNELLA F, ARBIB MA, et al. Dysfunctions of the basal Ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome[J]. PLoS Comput Biol, 2017, 13(3): e1005395. doi: 10.1371/journal.pcbi.1005395
    [19] MAIA TV, CONCEICAO VA. Dopaminergic disturbances in tourette syndrome: An integrative account[J]. Biol Psychiatry, 2018, 84(5): 332-344. doi: 10.1016/j.biopsych.2018.02.1172
    [20] 冯鹏, 史正刚, 孙治前, 等. 神经递质与抽动秽语综合征[J]. 重庆医科大学学报, 2021, 46(5): 516-521. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYK202105004.htm
    [21] 赵靖平, 孙梦夕. 多巴胺与精神活动[J]. 中华精神科杂志, 2019, 52(4): 287-289. doi: 10.3760/cma.j.issn.1006-7884.2019.04.010
    [22] NAKAMURA Y, REVA M, DIGREGORIO DA. Variations in Ca2+ influx can alter Chelator-based estimates of Ca2+ channel-synaptic vesicle coupling distance[J]. J Neurosci, 2018, 38(16): 3971-3987. doi: 10.1523/JNEUROSCI.2061-17.2018
    [23] YOON TY, MUNSON M. SNARE complex assembly and disassembly[J]. Curr Biol, 2018, 28(8): R397-R401. doi: 10.1016/j.cub.2018.01.005
    [24] JAPEL M, GERTH F, SAKABA T, et al. Intersectin-mediated clearance of SNARE complexes is required for fast neurotransmission[J]. Cell Rep, 2020, 30(2): 409-420. doi: 10.1016/j.celrep.2019.12.035
    [25] HOLZ RW, BITTNER MA. Roles for the SNAP25 linker domain in the fusion pore and a dynamic plasma membrane SNARE "acceptor" complex[J]. J Gen Physiol, 2020, 152(9): e202012619. doi: 10.1085/jgp.202012619
    [26] BONNYCASTLE K, DAVENPORT EC, COUSIN MA. Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle[J]. J Neurochem, 2021, 157(2): 179-207. doi: 10.1111/jnc.15035
    [27] VERHAGE M, SORENSEN JB. SNAREopathies: Diversity in mechanisms and symptoms[J]. Neuron, 2020, 107(1): 22-37. doi: 10.1016/j.neuron.2020.05.036
    [28] 于佳. 慢性轻度应激不敏感大鼠海马突触活性区分子的定量蛋白质组学研究[D]. 重庆: 重庆医科大学, 2016.
    [29] SIMMONS RL, LI H, ALTEN B, et al. Overcoming presynaptic effects of VAMP2 mutations with 4-aminopyridine treatment[J]. Hum Mutat, 2020, 41(11): 1999-2011. doi: 10.1002/humu.24109
    [30] 裴青, 林寅, 荣伊, 等. Syntaxin-1通过激活突触递质传递加速早期突触的形成[J]. 生物化学与生物物理进展, 2020, 47(7): 626-633. https://www.cnki.com.cn/Article/CJFDTOTAL-SHSW202007006.htm
    [31] ZIEMINSKA E, LENART J, LAZAREWICZ JW. Select putative neurodevelopmental toxins modify SNAP-25 expression in primary cultures of rat cerebellar granule cells[J]. Toxicology, 2016, 370: 86-93. doi: 10.1016/j.tox.2016.09.013
    [32] 王敏. SNARE复合物相关基因遗传变异与注意缺陷多动障碍的关联研究[D]. 武汉: 华中科技大学, 2019.
    [33] WAKATA N, ARAKI Y, SUGIMOTO H, et al. IDPN-induced monoamine and hydroxyl radical changes in the rat brain[J]. Neurochem Res, 2000, 25(3): 401-404. doi: 10.1023/A:1007553323461
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  41
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-29
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2021-09-10
  • 发布日期:  2021-09-15

目录

    /

    返回文章
    返回