留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中药抗三阴性乳腺癌及其分子作用机制研究进展

吴沁航 朱丽文 李铭轩 曹婧 潘扬

吴沁航, 朱丽文, 李铭轩, 曹婧, 潘扬. 中药抗三阴性乳腺癌及其分子作用机制研究进展[J]. 南京中医药大学学报, 2021, 37(4): 602-608. doi: 10.14148/j.issn.1672-0482.2021.0602
引用本文: 吴沁航, 朱丽文, 李铭轩, 曹婧, 潘扬. 中药抗三阴性乳腺癌及其分子作用机制研究进展[J]. 南京中医药大学学报, 2021, 37(4): 602-608. doi: 10.14148/j.issn.1672-0482.2021.0602
WU Qin-hang, ZHU Li-wen, LI Ming-xuan, CAO Jing, PAN Yang. Research Progress of Traditional Chinese Medicine against Triple Negative Breast Cancer and the Underlying Molecular Mechanism[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(4): 602-608. doi: 10.14148/j.issn.1672-0482.2021.0602
Citation: WU Qin-hang, ZHU Li-wen, LI Ming-xuan, CAO Jing, PAN Yang. Research Progress of Traditional Chinese Medicine against Triple Negative Breast Cancer and the Underlying Molecular Mechanism[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(4): 602-608. doi: 10.14148/j.issn.1672-0482.2021.0602

中药抗三阴性乳腺癌及其分子作用机制研究进展

doi: 10.14148/j.issn.1672-0482.2021.0602
基金项目: 

国家自然科学基金 82004039

江苏高校优势学科建设工程资助项目 PAPD

详细信息
    作者简介:

    吴沁航,女,讲师,E-mail:wuqinhang@163.com

    通讯作者:

    潘扬,男,研究员,主要从事中药化学与生物技术研究,E-mail:y.pan2006@163.com

  • 中图分类号: R285.5

Research Progress of Traditional Chinese Medicine against Triple Negative Breast Cancer and the Underlying Molecular Mechanism

  • 摘要: 三阴性乳腺癌(TNBC)作为乳腺癌的一种亚型,具有侵袭性强、复发转移率高等特点,严重威胁女性身心健康,由于缺乏明确的分子靶标,目前仍以化疗为主,但临床治愈率低。中药可通过多途径、多靶点抑制TNBC的生长、降低其复发转移率,具有独特的治疗优势。文章结合国内外的最新研究成果,对中药及其活性成分抗TNBC的作用及其机制进行综述,为中药新药的开发及临床应用提供参考。

     

  • 表  1  植物来源抗TNBC活性成分

    活性成分 植物来源 英文名 种类 药理模型(细胞) 作用机制 参考文献
    蓝萼甲素 蓝萼香茶菜 Glaucocalyxin A 二萜 MDA-MB-231 抑制PI3K/Akt通路,诱导细胞凋亡 [10]
    木犀草素 木犀草 Luteolin 黄酮 MDA-MB-231 促进细胞自噬 [11]
    二氢杨梅素 藤茶 Dihydromyricetin 黄酮 MDA-MB-231 抑制端粒酶活性 [12]
    川芎嗪 川芎 Ligustrazine 生物碱 MDA-MB-231 抑制EMT及PI3K/Akt/mTOR通路,诱导细胞凋亡 [13]
    薯蓣皂苷 盾叶薯蓣 Dioscin 皂苷 MDA-MB-231/BT549 抑制MAPK通路及FOXO3a因子 [14]
    岩藻多糖 海洋褐藻 Fucoidan 多糖 MDA-MB-231 抑制NF-κB/PI3K/Akt通路 [15]
    白皮杉醇 葡萄、大黄 Piceatannol 蒽醌 MDA-MB-468 抑制Wnt/β-catenin通路,促进细胞凋亡 [16]
    大黄素 大黄 Emodin 蒽醌 MDA-MB-468/BT549/MDA-MB-231 抑制Wnt/β-catenin通路及EMT活性 [17]
    黄芪甲苷 黄芪 Astragaloside A 多糖 MDA-MB-231 抑制MAPK通路及Rac1因子 [18]
    红景天苷 红景天 Salidroside 苷类 MDA-MB-231 抑制EGFR结合位点及JAK2/STAT3通路 [19]
    芦荟大黄素 芦荟 Aloe-Emodin 蒽醌 MDA-MB-231 抑制FAK活性 [20]
    辣椒碱 辣椒 Capsaicin 酰胺 MDA-MB-231 抑制FAK活性 [21]
    秦皮乙素 秦皮、地黄 Esculetin 香豆素 MDA-MB-231 抑制肿瘤干细胞活性 [22]
    异三尖杉酯碱 三尖杉 Isoharringtonine 生物碱 HCC1937 抑制STAT3通路,改善肿瘤微环境 [23]
    白花丹醌 白花丹 Plumbagin purity 蒽醌 MDA-MB-231/468 抑制NF-κB通路 [24]
    土贝母总皂苷 土贝母 Saponins of Bolbost-emma paniculatum 皂苷 MDA-MB-231 抑制PI3K/Akt/mTOR通路 [25]
    下载: 导出CSV

    表  2  动物来源抗TNBC活性成分

    活性成分 动物来源 英文名 药理模型 作用机制 参考文献
    细胞 体内
    去甲斑蝥素 斑蝥 Norcantharidin MDA-MB-231/468/BT-549 抑制Akt和ERK通路 [26]
    蟾蜍灵 蟾蜍 Bufalin MDA-MB-231 小鼠 抑制RIP1/RIP3/PARP-1通路 [27]
    蜂毒肽 蜜蜂 Melittin MDA-MB-231 - 抑制PI3K/Akt/mTOR通路 [28]
    鹿角多肽 鹿角 Antler polypeptide MDA-MB-231 - 抑制NF-κB通路及EMT活性 [29]
    下载: 导出CSV

    表  3  中药复方抗TNBC

    中药复方 成分 药理模型 作用机制 参考文献
    细胞 体内
    温肾壮骨汤 淫羊藿、蛇床子、骨碎补、黄芪、葛根、甘草、白芍、桂枝、三七粉 MDA-MB-231 小鼠 抑制CCL5、IL-17B、IL-17BR表达 [30]
    黄芪汤 黄芪、知母、石膏、白芍药、麦门冬(去心)、甘草(炙微赤、锉)、白茯苓、肉桂、川升麻、熟干地黄、人参(去芦头) MDA-MB-231 斑马鱼 抑制EMT活性 [31]
    西黄丸 炙净乳香、没药、麝香、西牛黄 MDA-MB-231 小鼠 诱导细胞凋亡 [32]
    追毒方 红豆杉、雷公藤、干蟾皮 MDA-MB-231 下调β3GnT8 BCRP、P-gp的表达 [33]
    六味地黄丸 熟地黄、酒萸肉、山药、牡丹皮、茯苓、泽泻 - 小鼠 抑制Wnt/β-catenin通路及TCF-1 [34]
    下载: 导出CSV

    表  4  中药联合化学药抗TNBC

    中药单体 协同用药 药理模型 作用机制 参考文献
    细胞 体内
    小檗胺 拉帕替尼 MDA-MB-231 - 诱导细胞凋亡 [35]
    甘草酸 依托泊苷 MDA-MB-231 - 调节MAPK/Akt通路,诱导细胞凋亡 [36]
    人参皂苷Rg3 紫杉醇 MDA-MB-231/BT-549 - 抑制NF-κB通路 [37]
    丁香酚 顺铂 MDA-MB-231/468/BT-20 小鼠 抑制NF-κB通路 [38]
    姜黄素 阿霉素 MDA-MB-231/468/BT-549/BT-20 - 抑制TGF-β及PI3K/Akt通路 [39]
    下载: 导出CSV
  • [1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
    [2] MILIOLI HH, TISHCHENKO I, RIVEROS C, et al. Basal-like breast cancer: Molecular profiles, clinical features and survival outcomes[J]. BMC Med Genomics, 2017, 10(1): 19. doi: 10.1186/s12920-017-0250-9
    [3] HU Z, FAN C, OH DS, et al. The molecular portraits of breast tumors are conserved across microarray platforms[J]. BMC Genomics, 2006, 7: 96. doi: 10.1186/1471-2164-7-96
    [4] ZENG Z, CHEN X, ZHU D, et al. Low expression of circulating MicroRNA-34c is associated with poor prognosis in triple-negative breast cancer[J]. Yonsei Med J, 2017, 58(4): 697-702. doi: 10.3349/ymj.2017.58.4.697
    [5] SHIMELIS H, LADUCA H, HU C, et al. Triple-negative breast cancer risk genes identified by multigene hereditary cancer panel testing[J]. J Natl Cancer Inst, 2018, 110(8): 855-862. doi: 10.1093/jnci/djy106
    [6] HURLEY J, REIS IM, RODGERS SE, et al. The use of neoadjuvant platinum-based chemotherapy in locally advanced breast cancer that is triple negative: Retrospective analysis of 144 patients[J]. Breast Cancer Res Treat, 2013, 138(3): 783-794. doi: 10.1007/s10549-013-2497-y
    [7] GOTO W, KASHIWAGI S, TAKADA K, et al. Significance of intrinsic breast cancer subtypes on the long-term prognosis after neoadjuvant chemotherapy[J]. J Transl Med, 2018, 16(1): 307. doi: 10.1186/s12967-018-1679-0
    [8] 李云祥, 梁引库, 高飞雄, 等. 中药治疗乳腺癌疾病研究进展[J]. 中国实验方剂学杂志, 2019, 25(3): 211-219. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201903032.htm
    [9] CRAGG GM, NEWMAN DJ. Plants as a source of anti-cancer agents[J]. J Ethnopharmacol, 2005, 100(1/2): 72-79. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.335.8151
    [10] 吴沁航, 鲍刚, 朱丽文, 等. 蓝萼甲素通过PI3K/Akt信号通路诱导三阴性乳腺癌MDA-MB-231细胞凋亡[J]. 中国药理学通报, 2020, 36(9): 1227-1232. doi: 10.3969/j.issn.1001-1978.2020.09.009
    [11] YANG MY, WANG CJ, CHEN NF, et al. Luteolin enhances paclitaxel-induced apoptosis in human breast cancer MDA-MB-231 cells by blocking STAT3[J]. Chem Biol Interact, 2014, 213: 60-68. doi: 10.1016/j.cbi.2014.02.002
    [12] 赛娜, 周防震. 二氢杨梅素对MDA-MB-231人乳腺癌细胞端粒酶活性的影响[J]. 湖北民族学院学报(医学版), 2013, 30(4): 19-21, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-FBMZ201304008.htm
    [13] 吴腾飞, 董婉维, 王熙悦, 等. 川芎嗪通过调控PI3K/Akt信号通路抑制三阴乳腺癌的增殖侵袭和EMT[J]. 解剖科学进展, 2020, 26(3): 295-298. https://www.cnki.com.cn/Article/CJFDTOTAL-JPKX202003014.htm
    [14] 方瑞, 赵晶晶, 盛飞凤, 等. 薯蓣皂苷激活p38MAPK/FOXO3a信号抑制三阴性乳腺癌细胞上皮-间质转化及侵袭[J]. 中国细胞生物学学报, 2018, 40(5): 640-647. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZZ201805002.htm
    [15] FITTONJH, STRINGER DN, KARPINIEC SS. Therapies from fucoidan: An update[J]. Mar Drugs, 2015, 13(9): 5920-5946. doi: 10.3390/md13095920
    [16] 王风仙, 叶诗华, 赵卓佳, 等. 白皮杉醇对三阴性乳腺癌细胞系MDA-MB-468抗肿瘤作用及机制[J]. 中国实验方剂学杂志, 2021, 27(7): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202107006.htm
    [17] 魏业东. 大黄素通过Wnt/β-catenin信号通路抑制三阴性乳腺癌转移及EMT效应的体外研究[D]. 上海: 华东理工大学, 2018.
    [18] JIANG K, LU Q, LI Q, et al. Astragaloside Ⅳ inhibits breast cancer cell invasion by suppressing Vav3 mediated Rac1/MAPK signaling[J]. Int Immunopharmacol, 2017, 42: 195-202. doi: 10.1016/j.intimp.2016.10.001
    [19] KANG DY, SP N, KIM DH, et al. Salidroside inhibits migration, invasion and angiogenesis of MDA-MB 231 TNBC cells by regulating EGFR/Jak2/STAT3 signaling via MMP2[J]. Int J Oncol, 2018, 53(2): 877-885. doi: 10.3892/ijo.2018.4430/download
    [20] 何振辉, 何太平, 翁闪凡, 等. 芦荟大黄素对高转移乳腺癌细胞MDA-MB-231体外转移潜能的影响[J]. 中国药理学通报, 2013, 29(8): 1114-1118. doi: 10.3969/j.issn.1001-1978.2013.08.017
    [21] 李伯和, 袁磊. 辣椒碱对乳腺癌MDA-MB-231细胞迁移和侵袭的抑制作用及其机制[J]. 生理学报, 2017, 69(2): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXU201702008.htm
    [22] CHANG HT, CHOU CT, LIN YS, et al. Esculetin, a natural coumarin compound, evokes Ca2+ movement and activation of Ca2+-associated mitochondrial apoptotic pathways that involved cell cycle arrest in ZR-75-1 human breast cancer cells[J]. Tumor Biol, 2016, 37(4): 4665-4678. doi: 10.1007/s13277-015-4286-1
    [23] CHEN W, WANG H, CHENG M, et al. Isoharringtonine inhibits breast cancer stem-like properties and STAT3 signaling[J]. Biomed Pharmacother, 2018, 103: 435-442. doi: 10.1016/j.biopha.2018.04.076
    [24] MESSEHA SS, ZARMOUH NO, MENDONCA P, et al. The inhibitory effects of plumbagin on the NF-κB pathway and CCL2 release in racially different triple-negative breast cancer cells[J]. PLoS ONE, 2018, 13(7): e0201116. doi: 10.1371/journal.pone.0201116
    [25] DOU JW, SHANG RG, LEI XQ, et al. Total saponins of Bolbostemma paniculatum (maxim. ) Franquet exert antitumor activity against MDA-MB-231 human breast cancer cells via inhibiting PI3K/Akt/mTOR pathway[J]. BMC Complementary Altern Med, 2019, 19(1): 1-9. doi: 10.1186/s12906-018-2420-5
    [26] HE Q, XUESY, TAN YQ, et al. Dual inhibition of Akt and ERK signaling induces cell senescence in triple-negative breast cancer[J]. Cancer Lett, 2019, 448: 94-104. doi: 10.1016/j.canlet.2019.02.004
    [27] LI YL, TIAN X, LIU XD, et al. Bufalin inhibits human breast cancer tumorigenesis by inducing cell death through the ROS-mediated RIP1/RIP3/PARP-1 pathways[J]. Carcinogenesis, 2018, 39(5): 700-707. doi: 10.1093/carcin/bgy039
    [28] DUFFY C, SOROLLA A, WANG E, et al. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer[J]. NPJ Precis Oncol, 2020, 4: 24. doi: 10.1038/s41698-020-00129-0
    [29] XU G, ZHAO H, XU J, et al. Hard antler extract inhibits invasion and epithelial-mesenchymal transition of triple-negative and Her-2+ breast cancer cells by attenuating nuclear factor-κB signaling[J]. J Ethnopharmacol, 2021, 269: 113705. doi: 10.1016/j.jep.2020.113705
    [30] HAN XH, WANG CL, XIE Y, et al. Anti-metastatic effect and mechanisms of Wenshen Zhuanggu Formula in human breast cancer cells[J]. J Ethnopharmacol, 2015, 162: 39-46. doi: 10.1016/j.jep.2014.12.036
    [31] GUOY, FAN Y, PEI X. Fangjihuangqi Decoction inhibits MDA-MB-231 cell invasion in vitro and decreases tumor growth and metastasis in triple-negative breast cancer xenografts tumor zebrafish model[J]. Cancer Med, 2020, 9(7): 2564-2578. doi: 10.1002/cam4.2894
    [32] ZHENG WX, HAN SY, JIANG ST, et al. Antitumor effects of Xi Huang pills on MDA-MB-231 cells in vitro and in vivo[J]. Mol Med Report, 2018, 18(2): 2068-2078. http://www.ingentaconnect.com/content/sp/mmr/2018/00000018/00000002/art00102
    [33] 刘敏, 刘春亮, 梁国强, 等. 追毒方逆转三阴性乳腺癌MDA-MB-231细胞耐药的作用机制[J]. 南京中医药大学学报, 2019, 35(1): 63-67. http://xb.njucm.edu.cn/jnutcmns/ch/reader/view_abstract.aspx?file_no=zr20190115&flag=1
    [34] ZHENG LX, ZHENG Q, YU ZP, et al. Liuwei Dihuang pill suppresses metastasis by regulating the wnt pathway and disrupting -catenin/T cell factor interactions in a murine model of triple-negative breast cancer[J]. J Tradit Chin Med, 2019, 39(6): 826-832.
    [35] 朱激扬, 陈华, 徐燕芳, 等. 小檗胺联合拉帕替尼对三阴性乳腺癌细胞增殖和凋亡的影响[J]. 中国医药导报, 2020, 17(20): 123-126. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202020031.htm
    [36] CAI Y, ZHAO B, LIANG Q, et al. The selective effect of glycyrrhizin and glycyrrhetinic acid on topoisomerase Ⅱα and apoptosis in combination with etoposide on triple negative breast cancer MDA-MB-231 cells[J]. Eur J Pharmacol, 2017, 809: 87-97. doi: 10.1016/j.ejphar.2017.05.026
    [37] YUAN Z, JIANG H, ZHU X, et al. Ginsenoside Rg3 promotes cytotoxicity of Paclitaxel through inhibiting NF-κB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer[J]. Biomed Pharmacother, 2017, 89: 227-232. doi: 10.1016/j.biopha.2017.02.038
    [38] ISLAM SS, AL-SHARIF I, SULTAN A, et al. Eugenol potentiates cisplatin anti-cancer activity through inhibition of ALDH-positive breast cancer stem cells and the NF-κB signaling pathway[J]. Mol Carcinog, 2018, 57(3): 333-346. doi: 10.1002/mc.22758
    [39] CHEN WC, LAI YA, LIN YC, et al. Curcumin suppresses doxorubicin-induced epithelial-mesenchymal transition via the inhibition of TGF-β and PI3K/AKT signaling pathways in triple-negative breast cancer cells[J]. J Agric Food Chem, 2013, 61(48): 11817-11824. doi: 10.1021/jf404092f
    [40] 亓子豪, 孟娇, 王子良, 等. 树舌灵芝提取物对三阴乳腺癌模型小鼠肿瘤抑制作用及其机理研究[J]. 中国中西医结合杂志, 2016, 36(3): 366-369. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXJ201603026.htm
    [41] SHAY JW. Role of telomeres and telomerase in aging and cancer[J]. Cancer Discov, 2016, 6(6): 584-593. doi: 10.1158/2159-8290.CD-16-0062
    [42] WANG S, YAN WW, HE M, et al. Aloe emodin inhibits telomerase activity in breast cancer cells: Transcriptional and enzymological mechanism[J]. Pharmacol Rep, 2020, 72(5): 1383-1396. doi: 10.1007/s43440-020-00062-w
    [43] BIDET K. New insights into the implication of epigenetic alterations in the EMT of triple negative breast cancer[J]. Cancers, 2019, 11(4): 559. doi: 10.3390/cancers11040559
    [44] 吴群丹. PI3K-Akt-mTOR信号传导通路与乳腺癌关系的研究进展[J]. 海峡药学, 2020, 32(1): 172-174. doi: 10.3969/j.issn.1006-3765.2020.01.069
    [45] HE X, WANG Y, ZHU J, et al. Resveratrol enhances the anti-tumor activity of the mTOR inhibitor rapamycin in multiple breast cancer cell lines mainly by suppressing rapamycin-induced AKT signaling[J]. Cancer Lett, 2011, 301(2): 168-176. doi: 10.1016/j.canlet.2010.11.012
    [46] TAN J, YU Q. Molecular mechanisms of tumor resistance to PI3K-mTOR-targeted therapy[J]. Chin J Cancer, 2013, 32(7): 376-379. doi: 10.5732/cjc.012.10287
    [47] YUE JC, LOPEZ JM. Understanding MAPK signaling pathways in apoptosis[J]. Int J Mol Sci, 2020, 21(7): 2346. doi: 10.3390/ijms21072346
    [48] GU XD, XU LL, ZHAO H, et al. Cantharidin suppressed breast cancer MDA-MB-231 cell growth and migration by inhibiting MAPK signaling pathway[J]. Braz J Med Biol Res, 2017, 50(7): e5920. doi: 10.1590/1414-431x20175920
    [49] SHIELDS BJ, WIEDE F, GURZOV EN, et al. TCPTP regulates SFK and STAT3 signaling and is lost in triple-negative breast cancers[J]. Mol Cell Biol, 2013, 33(3): 557-570. doi: 10.1128/MCB.01016-12
    [50] ALSAMRI H, EL HASASNA H, AL DHAHERI Y, et al. Carnosol, a natural polyphenol, inhibits migration, metastasis, and tumor growth of breast cancer via a ROS-dependent proteasome degradation of STAT3[J]. Front Oncol, 2019, 9: 743. doi: 10.3389/fonc.2019.00743
    [51] DEMIRCIOGLU F, WANG J, CANDIDO J, et al. Cancer associated fibroblast FAK regulates malignant cell metabolism[J]. Nat Commun, 2020, 11(1): 1290. doi: 10.1038/s41467-020-15104-3
    [52] 乐韵, 张夏炎, 李凯. 秦皮乙素通过HIF-1α调控乏氧微环境中三阴性乳腺癌细胞干性[J]. 中国新药与临床杂志, 2020, 39(9): 558-563. https://www.cnki.com.cn/Article/CJFDTOTAL-XYYL202009012.htm
    [53] 张宗城, 张艳玲, 叶桦, 等. 槐耳水提取物对三阴性乳腺癌干细胞特性的影响[J]. 中医药导报, 2020, 26(9): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZB202009003.htm
  • 加载中
表(4)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  59
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2021-07-10
  • 发布日期:  2021-07-15

目录

    /

    返回文章
    返回