留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于脑-机接口的针刺手法量学规范化研究

金传阳 朱海滨 熊嘉玮 张建斌

金传阳, 朱海滨, 熊嘉玮, 张建斌. 基于脑-机接口的针刺手法量学规范化研究[J]. 南京中医药大学学报, 2021, 37(4): 587-591. doi: 10.14148/j.issn.1672-0482.2021.0587
引用本文: 金传阳, 朱海滨, 熊嘉玮, 张建斌. 基于脑-机接口的针刺手法量学规范化研究[J]. 南京中医药大学学报, 2021, 37(4): 587-591. doi: 10.14148/j.issn.1672-0482.2021.0587
JIN Chuan-yang, ZHU Hai-bin, XIONG Jia-wei, ZHANG Jian-bin. Standardization Research on Quantification of Acupuncture Manipulation Stimuli Based on Brain-Computer Interface[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(4): 587-591. doi: 10.14148/j.issn.1672-0482.2021.0587
Citation: JIN Chuan-yang, ZHU Hai-bin, XIONG Jia-wei, ZHANG Jian-bin. Standardization Research on Quantification of Acupuncture Manipulation Stimuli Based on Brain-Computer Interface[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(4): 587-591. doi: 10.14148/j.issn.1672-0482.2021.0587

基于脑-机接口的针刺手法量学规范化研究

doi: 10.14148/j.issn.1672-0482.2021.0587
基金项目: 

国家自然科学基金 81973947

南京中医药大学自然科学基金 XZR2020053

详细信息
    作者简介:

    金传阳,男,博士研究生,E-mail:laopenti2011@163.com

    通讯作者:

    张建斌,男,教授, 主要从事针灸理论与临床转化的研究,E-mail:zhangjianbin@njucm.edu.cn

  • 中图分类号: R245.3

Standardization Research on Quantification of Acupuncture Manipulation Stimuli Based on Brain-Computer Interface

  • 摘要: 基于脑-机接口技术分析针刺治疗中相关刺激量和效应评价等相关问题,对针刺手法量学规范化研究作初步论述。提出基于脑-机接口的针刺手法量学研究特点包括数据量巨大、数据流稳健、客观量化和自由度分析高等。认为针灸临床视角下的脑-机接口数据获取重点包括了神经元网络整体联结性,特定脑区活动,针刺干预中机体耐受/痛阈波动,皮质不同板层神经元动力学改变等4方面。以针灸干预中风后康复的疗效评价为例,说明基于脑-机接口的针刺手法量学规范化的研究特点和潜在优势。

     

  • [1] KRUCOFF MO, RAHIMPOUR S, SLUTZKY MW, et al. Enhancing nervous system recovery through neurobiologics, neural interface training, and neurorehabilitation[J ]. Front Neurosci, 2016, 10: 584. http://www.researchgate.net/profile/Max_Krucoff/publication/311919389_Enhancing_Nervous_System_Recovery_through_Neurobiologics_Neural_Interface_Training_and_Neurorehabilitation/links/587d620c08ae9a860ff0fcec.pdf
    [2] VIDAL JJ. Toward direct brain-computer communication[J]. Annu Rev Biophys Bioeng, 1973, 2 : 157-180. doi: 10.1146/annurev.bb.02.060173.001105
    [3] LEVINE SP, HUGGINS JE, BEMENT SL, et al. A direct brain interface based on event-related potentials[J ]. IEEE Trans Rehabil Eng, 2000, 8(2) : 180-185. doi: 10.1109/86.847809
    [4] VANNESTE S, SONG JJ, DE RIDDER D. Thalamocortical dysrhythmia detected by machine learning[J]. Nat Commun, 2018, 9(1) : 1103. doi: 10.1038/s41467-018-02820-0
    [5] 傅立新. 从针刺手法量学的系列研究看针灸科研与临床实践的关系[C]. 杭州: 中国针灸学会2009学术年会, 2009 : 2.
    [6] 石学敏. 捻转补泻手法的应用及其量学概念[J]. 中国医药学报, 1987, 2(5) : 272-273. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY198705004.htm
    [7] 朱琏. 新针灸学[M]. 南宁: 广西人民出版社, 1980: 11-16.
    [8] 承淡安. 中国针灸学[M]. 北京: 人民卫生出版社, 1955 : 16.
    [9] 王季春. 从针刺手法量学的系列研究看针灸科研与临床实践的关系[J]. 实用中医内科杂志, 2020: 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZY202108046.htm
    [10] 马旭, 沈婧蕾, 杨华元. 针刺手法参数采集及量效关系分析[J]. 上海针灸杂志, 2020, 39(11) : 1479-1482. https://www.cnki.com.cn/Article/CJFDTOTAL-SHZJ202011026.htm
    [11] CAI RL, SHEN GM, WANG H, et al. Brain functional connectivity network studies of acupuncture: A systematic review on resting-state fMRI[J]. JIntegr Med, 2018, 16(1) : 26-33. http://www.cqvip.com/QK/87110A/20181/674409085.html
    [12] 张青, 余玲玲, 刘诗琴, 等. 关于针刺得气中枢响应的fMRI研究现状与思索[J]. 针刺研究, 2018, 43(5) : 330-334. https://www.cnki.com.cn/Article/CJFDTOTAL-XCYJ201805016.htm
    [13] 李香淑, 胡佳慧, 鲁海, 等. 基于fMRI技术探讨电针与手针中枢机制响应差异[J]. 分子影像学杂志, 2020, 43 (1) : 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYX202001030.htm
    [14] YADAV D, YADAV S, VEER K. A comprehensive assessment of brain computer interfaces: Recent trends and challenges[J]. J Neurosci Methods, 2020, 346 : 108918. doi: 10.1016/j.jneumeth.2020.108918
    [15] HUANG K, LIANG S, SUN Z, et al. Startup mechanism of moxibustion warming and dredging function[J]. Chin Acupunct Moxib, 2017, 37(9) : 1023-1026. http://europepmc.org/abstract/MED/29354927
    [16] CARLSON D, CARIN L. Continuing progress of spike sorting in the era of big data[J]. Curr Opin Neurobiol, 2019, 55 : 90- 96. doi: 10.1016/j.conb.2019.02.007
    [17] ZONG W, WU R, CHEN S, et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging[J]. Nat Methods, 2021, 18(1) : 46-49. doi: 10.1038/s41592-020-01024-z
    [18] VON BARTHELD CS, BAHNEY J, HERCULANO - HOUZEL S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting[J]. J Comp Neurol, 2016, 524(18) : 3865-3895. doi: 10.1002/cne.24040
    [19] OXLEY TJ, YOO PE, RIND GS, etal. Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience[J]. J Neurointerv Surg, 2021, 13 (2) : 102-108. doi: 10.1136/neurintsurg-2020-016862
    [20] SAHA S, MAMUN KA, AHMED K, etal. Progress in brain computer interface: Challenges and opportunities[J ]. Front Syst Neurosci, 2021, 15 : 578-875.
    [21] HE Z, LI Z, YANG F, etal. Advances in multimodal emotion recognition based on brain-computer interfaces[J]. Brain Sci, 2020, 10(10) : 687. doi: 10.3390/brainsci10100687
    [22] SU F, XU W. Enhancing brain plasticity to promote stroke recovery[J]. Front Neurol, 2020, 11 : 554089. doi: 10.3389/fneur.2020.554089
    [23] SMALL SL, BUCCINO G, SOLODKIN A. Brain repair after stroke: A novel neurological model[J ]. Nat Rev Neurol, 2013, 9(12) : 698-707. http://europepmc.org/abstract/med/24217509
    [24] DIMYAN MA, COHEN LG. Neuroplasticity in the context of motor rehabilitation after stroke[J]. Nat Rev Neurol, 2011, 7 (2) : 76-85. doi: 10.1038/nrneurol.2010.200
    [25] ZHANG R, LAO L, REN K, et al. Mechanisms of acupuncture-electroacupuncture on persistent pain[J ]. Anesthesiology, 2014, 120(2) : 482-503. doi: 10.1097/ALN.0000000000000101
    [26] KIM SK, BAE H. Acupuncture and immune modulation[J]. Autonom Neurosc Basic Clin, 2010, 157(1/2) : 38-41. http://www.ncbi.nlm.nih.gov/pubmed/20399151
    [27] HAN JS. Acupuncture: Neuropeptide release produced by electrical stimulation of different frequencies[J ]. Trends Neurosci, 2003, 26(1) : 17-22. doi: 10.1016/S0166-2236(02)00006-1
    [28] MOLYNEAUX BJ, ARLOTTA P, MENEZES JR, et al. Neuronal subtype specification in the cerebral cortex[J]. Nat Rev Neurosci, 2007, 8(6) : 427-437. doi: 10.1038/nrn2151
    [29] HOCHBERG LR. Intracortical brain-computer interfaces for the restoration of communication and mobility[J]. Biophys J, 2013, 104(2) : 376. http://www.onacademic.com/detail/journal_1000035856305810_ffa6.html
    [30] CAJIGAS I, VEDANTAM A. Brain-computer interface, neuromodulation, and neurorehabilitation strategies for spinal cord injury[J]. Neurosurg Clin N Am, 2021, 32(3) : 407-417. doi: 10.1016/j.nec.2021.03.012
    [31] WEN D, FAN Y, HSU SH, etal. Combining brain-computer interface and virtual reality for rehabilitation in neurological diseases: A narrative review[J ]. Ann Phys Rehabil Med, 2021, 64(1) : 101404. doi: 10.1016/j.rehab.2020.03.015
  • 加载中
计量
  • 文章访问数:  278
  • HTML全文浏览量:  66
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2021-07-10
  • 发布日期:  2021-07-15

目录

    /

    返回文章
    返回