留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

藁本内酯抑制RANKL诱导RAW264.7向破骨细胞分化及其与GPER相关机制

崔杰 李梦雨 刘雨彤 毛洪运 林紫微 杨菲 华永庆

崔杰, 李梦雨, 刘雨彤, 毛洪运, 林紫微, 杨菲, 华永庆. 藁本内酯抑制RANKL诱导RAW264.7向破骨细胞分化及其与GPER相关机制[J]. 南京中医药大学学报, 2021, 37(4): 514-520. doi: 10.14148/j.issn.1672-0482.2021.0514
引用本文: 崔杰, 李梦雨, 刘雨彤, 毛洪运, 林紫微, 杨菲, 华永庆. 藁本内酯抑制RANKL诱导RAW264.7向破骨细胞分化及其与GPER相关机制[J]. 南京中医药大学学报, 2021, 37(4): 514-520. doi: 10.14148/j.issn.1672-0482.2021.0514
CUI Jie, LI Meng-yu, LIU Yu-tong, MAO Hong-yun, LIN Zi-wei, YANG Fei, HUA Yong-qing. Ligustilide Inhibits RANKL-Induced Osteoclast Differentiation in RAW264.7 Cells and Its MechanismRelated by GPER[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(4): 514-520. doi: 10.14148/j.issn.1672-0482.2021.0514
Citation: CUI Jie, LI Meng-yu, LIU Yu-tong, MAO Hong-yun, LIN Zi-wei, YANG Fei, HUA Yong-qing. Ligustilide Inhibits RANKL-Induced Osteoclast Differentiation in RAW264.7 Cells and Its Mechanism Related by GPER[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(4): 514-520. doi: 10.14148/j.issn.1672-0482.2021.0514

藁本内酯抑制RANKL诱导RAW264.7向破骨细胞分化及其与GPER相关机制

doi: 10.14148/j.issn.1672-0482.2021.0514
基金项目: 

国家自然科学基金 81473390

江苏省中药资源产业化过程协同创新中心开放课题 ZDXM-2-7

江苏省中药药效与安全性评价重点实验室资助项目 JKLPSE201818

江苏省高等学校自然科学研究重大项目 20KJA360001

详细信息
    作者简介:

    崔杰,女,硕士研究生,E-mail: 1310691686@qq.com

    通讯作者:

    华永庆,男,副研究员,主要从事中药内分泌药理研究,E-mail: hua_yq@njucm.edu.cn

  • 中图分类号: R285.5

Ligustilide Inhibits RANKL-Induced Osteoclast Differentiation in RAW264.7 Cells and Its Mechanism Related by GPER

  • 摘要: 目的  观察藁本内酯(LIG)对核因子κB受体活化因子配体(RANKL)诱导RAW264.7向破骨细胞分化的影响,并探讨该作用与G蛋白偶联雌激素受体(GPER)的相关机制。方法  体外培养RAW264.7细胞,RANKL诱导破骨细胞分化,并用LIG进行干预。通过抗酒石酸酸性磷酸酶(TRAP)活性检测和TRAP染色法评价破骨细胞形成和分化能力;qPCR法检测GPER及破骨细胞相关基因mRNA水平;Western blot法检测GPER蛋白表达;采用GPER特异性拮抗剂G36进行干预,观察LIG干预破骨细胞分化的作用变化。结果  LIG浓度为10 μmol/L时,TRAP活性检测结果显示,TRAP活性显著降低(P < 0.01);TRAP染色结果显示,与RANKL组相比,LIG组TRAP阳性细胞形成减少(P < 0.001);qPCR检测结果显示,与RANKL组相比,LIG组树突状细胞-特异性跨膜蛋白(DC-STAMP)、活化T细胞核因子(NFATc1)、组织蛋白酶K(CTSK)和核因子κB受体(RANK)的mRNA水平显著降低(P < 0.05, P < 0.001),而GPER mRNA表达明显升高(P < 0.001);Western blot结果显示,与RANKL组相比,LIG组GPER蛋白表达升高(P < 0.001)。与LIG组比较,LIG+G36组TRAP阳性细胞数升高(P < 0.01),TRAP活性增强(P < 0.05),DC-STAMP、NFATc1、CTSK、RANK mRNA的表达升高(P < 0.05)。结论  LIG能够抑制RANKL诱导RAW264.7向破骨细胞分化,其机制可能是促进GPER表达,减少RANK和下游转录因子NFATc1的表达,抑制破骨细胞分化和骨吸收功能。

     

  • 图  1  LIG对RANKL诱导的破骨细胞活性的影响

    图  2  LIG对RANKL诱导的破骨细胞TRAP活性的影响

    注:与对照组比较,#P < 0.05;与RANKL组比较,**P < 0.01, ***P < 0.001。x±sn=6。

    图  3  LIG对RANKL诱导的TRAP阳性细胞形成的影响

    注:与对照组比较,###P < 0.001;与RANKL组比较,***P < 0.001。x±sn=4。×400,比例尺=100 μm。

    图  4  LIG对RANKL诱导的破骨细胞标志性基因DC-STAMP、NFATc1、CTSK、RANK mRNA表达的影响

    注:与对照组比较,###P < 0.001;与RANKL组比较,*P < 0.05, **P < 0.01, ***P < 0.001。x±sn=3。

    图  5  LIG对RANKL诱导的破骨细胞分化中GPER蛋白表达的影响

    注:与对照组比较,###P < 0.001;与RANKL组比较,***P < 0.001。x±sn=3。

    图  6  LIG对RANKL诱导破骨细胞分化中GPER mRNA表达的影响

    注:与对照组比较,##P < 0.01;与RANKL组比较,***P < 0.001。x±sn=3。

    图  7  G36干预下LIG对RANKL诱导的TRAP阳性细胞形成的影响

    注:与对照组比较,###P < 0.001;与RANKL组比较,***P < 0.001;与LIG组比较,&&P < 0.01。x±sn=4。×400,比例尺=100 μm。

    图  8  G36干预下LIG对RANKL诱导的破骨细胞TRAP活性表达的影响

    注:与对照组比较,###P < 0.001;与RANKL组比较,**P < 0.01;与LIG组比较,&P < 0.05。x±sn=6。

    图  9  G36干预下LIG对RANKL诱导的破骨细胞标志性基因表达的影响

    注:与对照组比较,##P < 0.01, ###P < 0.001;与RANKL组比较,*P < 0.05, **P < 0.01;与LIG组比较,&P < 0.05。x±sn=3。

    图  10  G36干预下LIG对RANKL诱导的破骨细胞F-actin环形成的影响

    注:与对照组比较,###P < 0.001;与RANKL组比较,**P < 0.01;与LIG组比较,&P < 0.05。x±sn=3。×200,比例尺=100 μm。

    表  1  引物序列

    引物 序列(5'→3')
    CTSK CAGTAGCCACGCTTCCTATCC(Forward)
    ACTGGGTGTCCAGCATTTCC(Reverse)
    NFATc1 CCCGTCACATTCTGGTCCAT(Forward)
    CAAGTAACCGTGTAGCTCCACAA(Reverse)
    DC-STAMP CTCGCCGGGCTTCTGCTCAT(Forward)
    CCGCTGTTGGTGCCTCTCCT(Reverse)
    RANK CCAGGACAGGGCTGATGAGAA(Forward)
    TGGCTGACATACACCACGATGA(Reverse)
    GPER TCCTCATCCTGGTGGTGAAC(Forward)
    GTCGTAGTACTGCTCGTCCA(Reverse)
    GAPDH GGTTGTCTCCTGCGACTTCA(Forward)
    TGGTCCAGGGTTTCTTACTCC(Reverse)
    下载: 导出CSV
  • [1] 中华医学会骨质疏松和骨矿盐疾病分会. 中国骨质疏松症流行病学调查及"健康骨骼"专项行动结果发布[J]. 中华骨质疏松和骨矿盐疾病杂志, 2019, 12(4): 317-318. doi: 10.3969/j.issn.1674-2591.2019.04.001
    [2] CUMMINGS SR, SAN MARTIN J, MCCLUNG MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis[J]. N Engl J Med, 2009, 361(8): 756-765. doi: 10.1056/NEJMoa0809493
    [3] OTTO S, PAUTKE C, VAN DEN WYNGAERT T, et al. Medication-related osteonecrosis of the jaw: Prevention, diagnosis and management in patients with cancer and bone metastases[J]. Cancer Treat Rev, 2018, 69: 177-187. doi: 10.1016/j.ctrv.2018.06.007
    [4] 中华中医药学会. 绝经后骨质疏松症(骨痿)中医药诊疗指南(2019年版)[J]. 中医正骨, 2020, 32(2): 1-13. doi: 10.3969/j.issn.1001-6015.2020.02.001
    [5] 赖满香, 林基伟, 廖利平, 等. 基于中医传承辅助系统的治疗原发性骨质疏松症方剂组方规律分析[J]. 中国实验方剂学杂志, 2017, 23(9): 202-207. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201709036.htm
    [6] 唐文文, 李国琴, 晋小军. 不同生长年限当归挥发油对比研究[J]. 中国实验方剂学杂志, 2013, 19(19): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201319048.htm
    [7] YANG F, LIN ZW, HUANG TY, et al. Ligustilide, a major bioactive component of Angelica sinensis, promotes bone formation via the GPR30/EGFR pathway[J]. Sci Rep, 2019, 9(1): 6991. doi: 10.1038/s41598-019-43518-7
    [8] RIGGS BL, KHOSLA S, MELTON LJ. A unitary model for involutional osteoporosis: Estrogen deficiency causes both type Ⅰ and type Ⅱ osteoporosis in postmenopausal women and contributes to bone loss in aging men[J]. J Bone Miner Res, 1998, 13(5): 763-773. doi: 10.1359/jbmr.1998.13.5.763
    [9] CAULEY JA, ROBBINS J, CHEN Z, et al. Effects of estrogen plus progestin on risk of fracture and bone mineral density: The women's health initiative randomized trial[J]. JAMA, 2003, 290(13): 1729-1738. doi: 10.1001/jama.290.13.1729
    [10] Collaborative Group on Epidemiological Studies of Ovarian Cancer. Menopausal hormone use and ovarian cancer risk: Individual participant meta-analysis of 52 epidemiological studies[J]. Lancet, 2015, 385(9980): 1835-1842. doi: 10.1016/S0140-6736(14)61687-1
    [11] LUO J, LIU DM. Does GPER really function as a G protein-coupled estrogen receptor in vivo?[J]. Front Endocrinol, 2020, 11: 148. doi: 10.3389/fendo.2020.00148
    [12] REVANKAR CM, CIMINO DF, SKLAR LA, et al. A transmembrane intracellular estrogen receptor mediates rapid cell signaling[J]. Science, 2005, 307(5715): 1625-1630. doi: 10.1126/science.1106943
    [13] THOMAS P, PANG Y, FILARDO EJ, et al. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells[J]. Endocrinology, 2005, 146(2): 624-632. doi: 10.1210/en.2004-1064
    [14] HEINO TJ, CHAGIN AS, SÄVENDAHL L. The novel estrogen receptor G-protein-coupled receptor 30 is expressed in human bone[J]. J Endocrinol, 2008, 197(2): R1-R6. doi: 10.1677/JOE-07-0629
    [15] LI J, XIANG L, JIANG XT, et al. Investigation of bioeffects of G protein-coupled receptor 1 on bone turnover in male mice[J]. J Orthop Translat, 2017, 10: 42-51. doi: 10.1016/j.jot.2017.05.001
    [16] MARTENSSON UE, SALEHI SA, WINDAHL S, et al. Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice[J]. Endocrinology, 2009, 150(2): 687-698. doi: 10.1210/en.2008-0623
    [17] MASUHARA M, TSUKAHARA T, TOMITA K, et al. A relation between osteoclastogenesis inhibition and membrane-type estrogen receptor GPR30[J]. Biochem Biophys Rep, 2016, 8: 389-394. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614543/pdf/main.pdf
    [18] KANG WB, DENG YT, WANG DS, et al. Osteoprotective effects of estrogen membrane receptor GPR30 in ovariectomized rats[J]. J Steroid Biochem Mol Biol, 2015, 154: 237-244. doi: 10.1016/j.jsbmb.2015.07.002
    [19] WANG DR, LI J, FENG W, et al. Ligustilide suppresses RANKL-induced osteoclastogenesis and bone resorption via inhibition of RANK expression[J]. J Cell Biochem, 2019, 120(11): 18667-18677. doi: 10.1002/jcb.29153
    [20] PARK JH, LEE NK, LEE SY. Current understanding of RANK signaling in osteoclast differentiation and maturation[J]. Mol Cells, 2017, 40(10): 706-713. http://www.molcells.org/file/contents_40_10.pdf
    [21] DESMAWATI D, SULASTRI D. Phytoestrogens and their health effect[J]. Open Access Maced J Med Sci, 2019, 7(3): 495-499. doi: 10.3889/oamjms.2019.086
    [22] ROWE IJ, BABER RJ. The effects of phytoestrogens on postmenopausal health[J]. Climacteric, 2021, 24(1): 57-63. doi: 10.1080/13697137.2020.1863356
    [23] QIAO C, YE WJ, LI S, et al. Icariin modulates mitochondrial function and apoptosis in high glucose-induced glomerular podocytes through G protein-coupled estrogen receptors[J]. Mol Cell Endocrinol, 2018, 473: 146-155. doi: 10.1016/j.mce.2018.01.014
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  138
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2021-07-10
  • 发布日期:  2021-07-15

目录

    /

    返回文章
    返回