留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肠道菌群介导的骨代谢失衡及中药干预研究进展

魏伟 陈玲 周永进 徐坠成 李万红 魏爱淳 黄桂成

魏伟, 陈玲, 周永进, 徐坠成, 李万红, 魏爱淳, 黄桂成. 肠道菌群介导的骨代谢失衡及中药干预研究进展[J]. 南京中医药大学学报, 2021, 37(3): 465-472. doi: 10.14148/j.issn.1672-0482.2021.0465
引用本文: 魏伟, 陈玲, 周永进, 徐坠成, 李万红, 魏爱淳, 黄桂成. 肠道菌群介导的骨代谢失衡及中药干预研究进展[J]. 南京中医药大学学报, 2021, 37(3): 465-472. doi: 10.14148/j.issn.1672-0482.2021.0465
WEI Wei, CHEN Ling, ZHOU Yong-jin, XU Zhui-cheng, LI Wan-hong, WEI Ai-chun, HUANG Gui-cheng. Progress on Gut Microbiota-Regulated Bone Metabolism Imbalance and Implications for Chinese Medicine Intervention[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(3): 465-472. doi: 10.14148/j.issn.1672-0482.2021.0465
Citation: WEI Wei, CHEN Ling, ZHOU Yong-jin, XU Zhui-cheng, LI Wan-hong, WEI Ai-chun, HUANG Gui-cheng. Progress on Gut Microbiota-Regulated Bone Metabolism Imbalance and Implications for Chinese Medicine Intervention[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(3): 465-472. doi: 10.14148/j.issn.1672-0482.2021.0465

肠道菌群介导的骨代谢失衡及中药干预研究进展

doi: 10.14148/j.issn.1672-0482.2021.0465
基金项目: 

国家自然科学基金 81774341

详细信息
    作者简介:

    魏伟,男,博士研究生,E-mail:1060143005@qq.com

    通讯作者:

    魏爱淳,男,主任中医师,主要从事中医药防治膝骨性关节炎研究,E-mail:jshawac@163.com

    黄桂成,男,教授,主要从事中医骨伤科退行和劳损疾病的临床及基础研究,E-mail:hgc@njucm.edu.cn

  • 中图分类号: R285.5

Progress on Gut Microbiota-Regulated Bone Metabolism Imbalance and Implications for Chinese Medicine Intervention

  • 摘要: 肠道菌群是人体内种类最多、密度最大的微生物群落的总称。肠道菌群可通过与宿主共代谢,调控宿主多种生理功能、维持体内免疫平衡,进而维护人体健康。近年来的研究结果表明,肠道菌群与宿主的骨代谢密切相关。在多种病理状态或药物等引起肠道菌群改变后,可引起继发性的病理性骨丢失。随着高通量测序、基因敲除、无菌鼠繁殖等新技术的发展,越来越多的证据表明肠道菌群可通过直接调控,或通过内源性物质代谢调控,或改变与骨代谢相关的激素水平影响宿主的骨代谢。拟在全面阐述肠道菌群与骨代谢关系的基础上,总结肠道菌群调控骨代谢的潜在途径和常见中药的作用机制,并探讨其对主要骨代谢异常相关疾病在临床治疗和药物靶点研究中的启示。

     

  • 图  1  肠道菌群与宿主骨代谢之间的联系

  • [1] QIN JJ, LI RQ, RAES J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65. doi: 10.1038/nature08821
    [2] SHETH T, PITCHUMONI CS, DAS KM. Musculoskeletal manifestations in inflammatory bowel disease: A revisit in search of immunopathophysiological mechanisms[J]. J Clin Gastroenterol, 2014, 48(4): 308-317. doi: 10.1097/MCG.0000000000000067
    [3] SCHVLE S, ROSSEL JB, FREY D, et al. Widely differing screening and treatment practice for osteoporosis in patients with inflammatory bowel diseases in the Swiss IBD cohort study[J]. Medicine, 2017, 96(22): e6788. doi: 10.1097/MD.0000000000006788
    [4] DI STEFANO M, VENETO G, MALSERVISI S, et al. Small intestine bacterial overgrowth and metabolic bone disease[J]. Dig Dis Sci, 2001, 46(5): 1077-1082. doi: 10.1023/A:1010722314493
    [5] DAS M, CRONIN O, KEOHANE DM, et al. Gut microbiota alterations associated with reduced bone mineral density in older adults[J]. Rheumatology, 2019, 58(12): 2295-2304. doi: 10.1093/rheumatology/kez302
    [6] GUSS JD, HORSFIELD MW, FONTENELE FF, et al. Alterations to the gut microbiome impair bone strength and tissue material properties[J]. J Bone Miner Res, 2017, 32(6): 1343-1353. doi: 10.1002/jbmr.3114
    [7] SJOGREN K, ENGDAHL C, HENNING P, et al. The gut microbiota regulates bone mass in mice[J]. J Bone Mineral Res, 2012, 27(6): 1357-1367. doi: 10.1002/jbmr.1588
    [8] LI JY, CHASSAING B, TYAGI AM, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics[J]. J Clin Invest, 2016, 126(6): 2049-2063. doi: 10.1172/JCI86062
    [9] TOPPING DL, CLIFTON PM. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides[J]. Physiol Rev, 2001, 81(3): 1031-1064. doi: 10.1152/physrev.2001.81.3.1031
    [10] CHANG MC, CHEN YJ, LIAN YC, et al. Butyrate stimulates histone H3 acetylation, 8-isoprostane production, RANKL expression, and regulated osteoprotegerin expression/secretion in MG-63 osteoblastic cells[J]. Int J Mol Sci, 2018, 19(12): E4071. doi: 10.3390/ijms19124071
    [11] TANG X, MA SH, LI YR, et al. Evaluating the activity of sodium butyrate to prevent osteoporosis in rats by promoting osteal GSK-3β/Nrf2 signaling and mitochondrial function[J]. J Agric Food Chem, 2020, 68(24): 6588-6603. doi: 10.1021/acs.jafc.0c01820
    [12] MOROZUMI A. High concentration of sodium butyrate suppresses osteoblastic differentiation and mineralized nodule formation in ROS17/2.8 cells[J]. J Oral Sci, 2011, 53(4): 509-516. doi: 10.2334/josnusd.53.509
    [13] LUCAS S, OMATA Y, HOFMANN J, et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss[J]. Nat Commun, 2018, 9(1): 55. doi: 10.1038/s41467-017-02490-4
    [14] TYAGI AM, YUMC, DARBY TM, et al. The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression[J]. Immunity, 2018, 49(6): 1116-1131. doi: 10.1016/j.immuni.2018.10.013
    [15] MONTALVANY-ANTONUCCI CC, DUFFLES LF, DE ARRUDA JAA, et al. Short-chain fatty acids and FFAR2 as suppressors of bone resorption[J]. Bone, 2019, 125: 112-121. doi: 10.1016/j.bone.2019.05.016
    [16] YANO JM, YU K, DONALDSON GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161(2): 264-276. doi: 10.1016/j.cell.2015.02.047
    [17] CLARKE G, GRENHAM S, SCULLY P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner[J]. Mol Psychiatry, 2013, 18(6): 666-673. doi: 10.1038/mp.2012.77
    [18] ZELANTE T, IANNITTI RG, CUNHA C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22[J]. Immunity, 2013, 39(2): 372-385. doi: 10.1016/j.immuni.2013.08.003
    [19] DUCY P, KARSENTY G. The two faces of serotonin in bone biology[J]. J Cell Biol, 2010, 191(1): 7-13. doi: 10.1083/jcb.201006123
    [20] YADAV VK, RYU JH, SUDA NN, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum[J]. Cell, 2008, 135(5): 825-837. doi: 10.1016/j.cell.2008.09.059
    [21] YUN HM, PARK KR, HONG JT, et al. Peripheral serotonin-mediated system suppresses bone development and regeneration via serotonin 6 G-protein-coupled receptor[J]. Sci Rep, 2016, 6: 30985. doi: 10.1038/srep30985
    [22] NAM SS, LEE JC, KIM HJ, et al. Serotonininhibits osteoblast differentiation and bone regeneration in rats[J]. J Periodontol, 2016, 87(4): 461-469. doi: 10.1902/jop.2015.150302
    [23] KODE A, MOSIALOU I, SILVA BC, et al. FOXO1 orchestrates the bone-suppressing function of gut-derived serotonin[J]. J Clin Invest, 2012, 122(10): 3490-3503. doi: 10.1172/JCI64906
    [24] REFAEY ME, MCGEE-LAWRENCE ME, FULZELE S, et al. Kynurenine, atryptophan metabolite that accumulates with age, induces bone loss[J]. J Bone Miner Res, 2017, 32(11): 2182-2193. doi: 10.1002/jbmr.3224
    [25] PIERCE JL, ROBERTS RL, YU KL, et al. Kynurenine suppresses osteoblastic cell energeticsin vitro and osteoblast numbers in vivo[J]. Exp Gerontol, 2020, 130: 110818. doi: 10.1016/j.exger.2019.110818
    [26] KIM BJ, HAMRICK MW, YOO HJ, et al. Thedetrimental effects of kynurenine, a tryptophan metabolite, on human bone metabolism[J]. J Clin Endocrinol Metab, 2019, 104(6): 2334-2342. doi: 10.1210/jc.2018-02481
    [27] ZHANG XQ, HE Y, DING M. Simultaneous determination of tryptophan and kynurenine in plasma samples of children patients with Kawasaki disease by high-performance liquid chromatography with programmed wavelength ultraviolet detection[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2009, 877(16/17): 1678-1682. http://www.sciencedirect.com/science/article/pii/S1570023209002682
    [28] DINCEL E. Evaluation of tryptophan/kynurenine pathway relevance with immune system biomarkers of low energy trauma hip fractures in osteoporotic patients[J]. Arch Rheumatol, 2017, 32(3): 203-208. doi: 10.5606/ArchRheumatol.2017.6216
    [29] GUSS JD, TAYLOR E, ROUSE Z, et al. The microbial metagenome and bone tissue composition in mice with microbiome-induced reductions in bone strength[J]. Bone, 2019, 127: 146-154. doi: 10.1016/j.bone.2019.06.010
    [30] ZHOU T, HEIANZA Y, CHEN YH, et al. Circulating gut microbiota metabolite trimethylamine N-oxide (TMAO) and changes in bone density in response to weight loss diets: The POUNDS lost trial[J]. Diabetes Care, 2019, 42(8): 1365-1371. doi: 10.2337/dc19-0134
    [31] YU MC, MALIK TYAGI A, LI JY, et al. PTH induces bone loss via microbial-dependent expansion of intestinal TNF+ T cells and Th17 cells[J]. Nat Commun, 2020, 11(1): 468. doi: 10.1038/s41467-019-14148-4
    [32] LI JY, YU M, PAL S, et al. Parathyroid hormone-dependent bone formation requires butyrate production by intestinal microbiota[J]. J Clin Invest, 2020, 130(4): 1767-1781. doi: 10.1172/JCI133473
    [33] SCHEPPER JD, COLLINS F, RIOS-ARCE ND, et al. Involvement of thegut microbiota and barrier function in glucocorticoid-induced osteoporosis[J]. J Bone Miner Res, 2020, 35(4): 801-820. doi: 10.1002/jbmr.3947
    [34] YAN J, HERZOG JW, TSANG K, et al. Gut microbiota induce IGF-1 and promote bone formation and growth[J]. PNAS, 2016, 113(47): E7554-E7563.
    [35] KEREZOUDI EN, MITSOU EK, GIOTI K, et al. Fermentation of Pleurotus ostreatus and Ganoderma lucidum mushrooms and their extracts by the gut microbiota of healthy and osteopenic women: Potential prebiotic effect and impact of mushroom fermentation products on human osteoblasts[J]. Food Funct, 2021, 12(4): 1529-1546. doi: 10.1039/D0FO02581J
    [36] ZHAO X, WANG YJ, NIE ZY, et al. Eucommia ulmoides leaf extract alters gut microbiota composition, enhances short-chain fatty acids production, and ameliorates osteoporosis in the senescence-accelerated mouse P6 (SAMP6) model[J]. Food Sci Nutr, 2020, 8(9): 4897-4906. doi: 10.1002/fsn3.1779
    [37] ZHAO X, AI JQ, MAO HP, et al. Effects of Eclipta prostrata on gut microbiota of SAMP6 mice with osteoporosis[J]. J Med Microbiol, 2019, 68(3): 402-416. doi: 10.1099/jmm.0.000936
    [38] LI L, CHEN BB, ZHU RY, et al. Fructus Ligustri Lucidi preserves bone quality through the regulation of gut microbiota diversity, oxidative stress, TMAO and Sirt6 levels in aging mice[J]. Aging, 2019, 11(21): 9348-9368. doi: 10.18632/aging.102376
    [39] XIAO HH, SHAM TT, CHAN CO, et al. Ametabolomics study on the bone protective effects of a lignan-rich fraction from Sambucus williamsii Ramulus in aged rats[J]. Front Pharmacol, 2018, 9: 932. doi: 10.3389/fphar.2018.00932
    [40] MEI FF, MENG KK, GU ZP, et al. Arecanut (Areca catechu L. ) seed polyphenol-ameliorated osteoporosis by altering gut microbiome via LYZ and the immune system in estrogen-deficient rats[J]. J Agric Food Chem, 2021, 69(1): 246-258. doi: 10.1021/acs.jafc.0c06671
    [41] LIU JS, LIU J, LIU L, et al. The gut microbiota alteration and the key bacteria inAstragalus polysaccharides (APS)-improved osteoporosis[J]. Food Res Int, 2020, 138: 109811. doi: 10.1016/j.foodres.2020.109811
    [42] LI B, LIU M, WANG Y, et al. Puerarin improves the bone micro-environment to inhibit OVX-induced osteoporosis via modulating SCFAs released by the gut microbiota and repairing intestinal mucosal integrity[J]. Biomed Pharmacother, 2020, 132: 110923. doi: 10.1016/j.biopha.2020.110923
    [43] WANG YK, CHEN J, CHEN J, et al. Daphnetin ameliorates glucocorticoid-induced osteoporosis via activation of Wnt/GSK-3β/β-catenin signaling[J]. Toxicol Appl Pharmacol, 2020, 409: 115333. doi: 10.1016/j.taap.2020.115333
    [44] YAN F, WANG LH, SHI Y, et al. Berberine promotes recovery of colitis and inhibits inflammatory responses in colonic macrophages and epithelial cells in DSS-treated mice[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(5): G504-G514. http://www.medicinabiomolecular.com.br/biblioteca/pdfs/Doencas/do-1352.pdf
    [45] JIA X, JIA L, MO L, et al. Berberineameliorates periodontal bone loss by regulating gut microbiota[J]. J Dent Res, 2019, 98(1): 107-116. doi: 10.1177/0022034518797275
    [46] BRON PA, VAN BAARLEN P, KLEEREBEZEM M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa[J]. Nat Rev Microbiol, 2011, 10(1): 66-78. http://www.onacademic.com/detail/journal_1000034864202510_975d.html
    [47] GIBSON GR, PROBERT HM, LOO JV, et al. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics[J]. Nutr Res Rev, 2004, 17(2): 259-275. doi: 10.1079/NRR200479
    [48] PAN HD, GUO RJ, JU YM, et al. A single bacterium restores the microbiome dysbiosis to protect bones from destruction in a rat model of rheumatoid arthritis[J]. Microbiome, 2019, 7(1): 107. doi: 10.1186/s40168-019-0719-1
    [49] TANABE K, NAKAMURA S, MORIYAMA-HASHIGUCHI M, et al. Dietaryfructooligosaccharide and glucomannan alter gut microbiota and improve bone metabolism in senescence-accelerated mouse[J]. J Agric Food Chem, 2019, 67(3): 867-874. doi: 10.1021/acs.jafc.8b05164
    [50] COWARDIN CA, AHERN PP, KUNG VL, et al. Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition[J]. Proc Natl Acad Sci USA, 2019, 116(24): 11988-11996. http://www.researchgate.net/publication/333445167_Mechanisms_by_which_sialylated_milk_oligosaccharides_impact_bone_biology_in_a_gnotobiotic_mouse_model_of_infant_undernutrition
    [51] LI JJ, YANG MY, LU CY, et al. Tunabone powder alleviates glucocorticoid-induced osteoporosis via coregulation of the NF-κB and wnt/β-catenin signaling pathways and modulation of gut microbiota composition and metabolism[J]. Mol Nutr Food Res, 2020, 64(5): e1900861. doi: 10.1002/mnfr.201900861
    [52] GUO DJ, LIU WW, ZHANG X, et al. Duck egg white-derived peptide VSEE (val-Ser-glu-glu) regulates bone and lipid metabolisms by wnt/β-catenin signaling pathway and intestinal microbiota[J]. Mol Nutr Food Res, 2019, 63(24): e1900525. doi: 10.1002/mnfr.201900525
  • 加载中
图(1)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  49
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2021-05-10
  • 发布日期:  2021-05-15

目录

    /

    返回文章
    返回