留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胡椒碱-茶氨酸共无定型复合物的制备与体内外研究

黄丽华 沈花 韩怡

黄丽华, 沈花, 韩怡. 胡椒碱-茶氨酸共无定型复合物的制备与体内外研究[J]. 南京中医药大学学报, 2021, 37(3): 411-418. doi: 10.14148/j.issn.1672-0482.2021.0411
引用本文: 黄丽华, 沈花, 韩怡. 胡椒碱-茶氨酸共无定型复合物的制备与体内外研究[J]. 南京中医药大学学报, 2021, 37(3): 411-418. doi: 10.14148/j.issn.1672-0482.2021.0411
HUANG Li-hua, SHEN Hua, HAN Yi. Preparation and in vivo and in vitro Study of Piperine-Theanine Co-Amorphous Complex[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(3): 411-418. doi: 10.14148/j.issn.1672-0482.2021.0411
Citation: HUANG Li-hua, SHEN Hua, HAN Yi. Preparation and in vivo and in vitro Study of Piperine-Theanine Co-Amorphous Complex[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(3): 411-418. doi: 10.14148/j.issn.1672-0482.2021.0411

胡椒碱-茶氨酸共无定型复合物的制备与体内外研究

doi: 10.14148/j.issn.1672-0482.2021.0411
基金项目: 

江苏省研究生科研创新计划项目 KYCX20_0675

江苏省药学会天晴医院药学项目 Q201931

详细信息
    作者简介:

    黄丽华,女,主管中药师,E-mail:541113975@qq.com

    通讯作者:

    沈花,女,主管中药师,主要从事医院药物制剂研究,E-mail: 3835354@qq.com

  • 中图分类号: R284

Preparation and in vivo and in vitro Study of Piperine-Theanine Co-Amorphous Complex

  • 摘要: 目的  将胡椒碱(PIP)和茶氨酸(THE)联合制备成胡椒碱-茶氨酸共无定型复合物(PIP-THE CAC),提高PIP的溶出度以及生物利用度。方法  通过淬火冷却法制备PIP-THE CAC,采用差示扫描量热分析(DSC)、粉末X-射线衍射(XRPD)、傅里叶红外光谱(FTIR)和扫描电镜(SEM)对制备的PIP-THE CAC进行表征分析,对PIP-THE CAC在漏槽和非漏槽条件下的体外溶出进行评价,并考察PIP-THE CAC的物理稳定性。此外,在大鼠体内进行PIP-THE CAC的药代动力学研究。结果  DSC和XRPD结果表明成功制备PIP-THE CAC。FTIR证实在PIP-THE CAC中,PIP与THE之间发生了分子间氢键相互作用,导致PIP-THE CAC具有良好的物理稳定性。SEM观察发现PIP-THE CAC呈不规则块状、颗粒状,已不见PIP和THE的特征。体外溶出实验表明,与PIP原料药及PIP-THEPM相比,PIP-THE CAC具有更高的溶出速率和溶出度并且可维持长时间的超饱和程度。药代动力学实验结果表明,与PIP原料药组比较,PIP-THE CAC组CmaxtmaxAUC0-24 hAUC0-∞显著增加(P < 0.01),PIP的Cmax和生物利用度分别提高了2.03、1.93倍(P < 0.01)。结论  将PIP和THE联合制备成的PIP-THE CAC能有效地改善PIP的溶解度、体外溶出度以及生物利用度。

     

  • 图  1  PIP原料药(a)、THE原料药(b)、无定型PIP(c)、PIP-THE PM(d)、PIP-THE CAC(e)的DSC图

    图  2  PIP原料药(a)、THE原料药(b)、PIP-THE PM(c)、PIP-THE CAC(d)的XRPD图谱

    图  3  PIP原料药(a)、THE原料药(b)、PIP-THE PM(c)、PIP-THE CAC(d)的FTIR图谱

    图  4  PIP原料药(A)、THE原料药(B)、PIP-THE PM(C)、PIP-THE CAC(D)的SEM图

    图  5  PIP原料药、PIP-THE PM和PIP-THE CAC在漏槽条件下的溶出曲线

    注:A.0.5%吐温-80的pH 1.2盐酸缓冲溶液; B.0.5%吐温-80的pH 6.8磷酸盐缓冲液; 与PIP原料药比较,*P<0.05,**P<0.01。

    图  6  PIP原料药、PIP-THE PM和PIP-THE CAC在非漏槽条件下的溶出曲线

    注:A.0.5%吐温-80的pH 1.2盐酸缓冲溶液; B.0.5%吐温-80的pH 6.8磷酸盐缓冲液;与PIP原料药组比较,*P<0.05,**P<0.01。

    图  7  在40 ℃ 75%相对湿度下的1 d无定型PIP(a)、PIP-THE CAC(b),15 d PIP-THE CAC(c),30 d PIP-THE CAC(d)的XRPD图

    图  8  大鼠体内PIP血药浓度-时间曲线图(x±s, n=6)

    表  1  PIP原料药组、PIP-THE PM组和PIP-THE CAC组中PIP的药代动力学参数(x±s, n=6)

    药代动力学参数 PIP PIP-THE PM PIP-THE CAC
    Cmax(μg·mL-1) 9.67±2.37 8.89±0.50 19.65±1.13**##
    tmax(h) 3.83±1.17 3.92±1.84 2.33±0.52*#
    t1/2(h) 6.22±2.67 5.50±1.37 6.27±2.12
    AUC0-24 h(μg·h·mL-1) 105.40±33.37 101.92±20.91 203.25±15.96**##
    AUC0-∞(μg·h·mL-1) 119.50±54.44 112.54±17.18 224.30±28.61**##
    注:与PIP原料药比较,*P < 0.05,**P < 0.01;与PIP-THE PM组比较,#P < 0.05,##P < 0.01。
    下载: 导出CSV
  • [1] MA ZG, YUAN YP, ZHANG X, et al. Piperine attenuates pathological cardiac fibrosis via PPAR-γ/AKT Pathways[J]. EbioMedicine, 2017, 18: 179-187. doi: 10.1016/j.ebiom.2017.03.021
    [2] 白音夫, 杨宏昕. 荜茇挥发油对动物实验性胃溃疡的保护作用[J]. 中草药, 2000, 31(1): 40-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO200001021.htm
    [3] LEE SA, HONG SS, HAN XH, et al. Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity[J]. Chem Pharm Bull, 2005, 53(7): 832-835. doi: 10.1248/cpb.53.832
    [4] SUNILA ES, KUTTAN G. Immunomodulatory and antitumor activity of Piper longum Linn. and piperine[J]. J Ethnopharmacol, 2004, 90(2/3): 339-346. http://www.onacademic.com/detail/journal_1000035405045810_f399.html
    [5] ONONIWU IM, IBENEME CE, EBONG OO. Effects of piperine on gastric acid secretion in albino rats[J]. Afr J Med Med Sci, 2002, 31(4): 293-295. http://europepmc.org/abstract/MED/15027765
    [6] KHAJURIA A, THUSU N, ZUTSHI U, et al. Piperine modulation of carcinogen induced oxidative stress in intestinal mucosa[J]. Mol Cell Biochem, 1998, 189(1/2): 113-118. doi: 10.1023/A:1006877614411
    [7] DOGRA RKS, KHANNA S, SHANKER R. Immunotoxicological effects of piperine in mice[J]. Toxicology, 2004, 196(3): 229-236. doi: 10.1016/j.tox.2003.10.006
    [8] 吴珍菊, 夏学进, 黄雪松. 胡椒碱平衡溶解度和表观油水分配系数的测定[J]. 暨南大学学报(自然科学与医学版), 2012, 33(5): 473-476. doi: 10.3969/j.issn.1000-9965.2012.05.008
    [9] 余丹妮, 伍薇, 祁玮玮, 等. 女贞子三萜-胡椒碱共无定型复合物的表征和体外溶出度评价[J]. 中草药, 2018, 49(3): 561-568. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201803009.htm
    [10] HSU CM, YU SC, TSAI FJ, et al. Characterization of in vitro and in vivo bioactivity of a ferulic acid-2-Hydroxypropyl-β-cyclodextrin inclusion complex[J]. Colloids Surf B Biointerfaces, 2019, 180: 68-74. doi: 10.1016/j.colsurfb.2019.04.020
    [11] AHMED S, CORVIS Y, GAHOUAL R, et al. Conception of nanosized hybrid liposome/poloxamer particles to thicken the interior core of liposomes and delay hydrophilic drug delivery[J]. Int J Pharm, 2019, 567: 118488. doi: 10.1016/j.ijpharm.2019.118488
    [12] VASCONCELOS T, MARQUES S, DAS NEVES J, et al. Amorphous solid dispersions: Rational selection of a manufacturing process[J]. Adv Drug Deliv Rev, 2016, 100: 85-101. doi: 10.1016/j.addr.2016.01.012
    [13] ABDULKARIM M, SHARMA PK, GUMBLETON M. Self-emulsifying drug delivery system: Mucus permeation and innovative quantification technologies[J]. Adv Drug Deliv Rev, 2019, 142: 62-74. doi: 10.1016/j.addr.2019.04.001
    [14] HOU GZ, WANG ZY, MA HG, et al. High-temperature stable plasmonic and cavity resonances in metal nanoparticle-decorated silicon nanopillars for strong broadband absorption in photothermal applications[J]. Nanoscale, 2019, 11(31): 14777-14784. doi: 10.1039/C9NR05019A
    [15] TRUBITSYN G, NGUYEN VN, DI TOMMASO C, et al. Impact of covalently Nile Red and covalently Rhodamine labeled fluorescent polymer micelles for the improved imaging of the respective drug delivery system[J]. Eur J Pharm Biopharm, 2019, 142: 480-487. doi: 10.1016/j.ejpb.2019.07.020
    [16] SHI XJ, SONG SJ, DING ZJ, et al. Improving the solubility, dissolution, and bioavailability of ibrutinib by preparing it in a coamorphous state with saccharin[J]. J Pharm Sci, 2019, 108(9): 3020-3028. doi: 10.1016/j.xphs.2019.04.031
    [17] FUNG MH, DEVAULT M, KUWATA KT, et al. Drug-excipient interactions: Effect on molecular mobility and physical stability of ketoconazole-organic acid coamorphous systems[J]. Mol Pharm, 2018, 15(3): 1052-1061. doi: 10.1021/acs.molpharmaceut.7b00932
    [18] CHAVAN RB, THIPPARABOINA R, KUMAR D, et al. Co amorphous systems: A product development perspective[J]. Int J Pharm, 2016, 515(1/2): 403-415. http://www.researchgate.net/profile/Rahul_Chavan13/publication/309292884_Co_Amorphous_Systems_A_Product_Development_Perspective/links/580afcca08aeef1bfee3fb42.pdf
    [19] OJARINTA R, HEIKKINEN AT, SIEVANEN E, et al. Dissolution behavior of co-amorphous amino acid-indomethacin mixtures: The ability of amino acids to stabilize the supersaturated state of indomethacin[J]. Eur J Pharm Biopharm, 2017, 112: 85-95. doi: 10.1016/j.ejpb.2016.11.023
    [20] LENZ E, JENSEN KT, BLAABJERG LI, et al. Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin-arginine[J]. Eur J Pharm Biopharm, 2015, 96: 44-52. doi: 10.1016/j.ejpb.2015.07.011
    [21] LENZ E, LOBMANN K, RADES T, et al. Hot melt extrusion and spray drying of co-amorphous indomethacin-arginine with polymers[J]. J Pharm Sci, 2017, 106(1): 302-312. doi: 10.1016/j.xphs.2016.09.027
    [22] PETRY I, LOBMANN K, GROHGANZ H, et al. Undesired co-amorphisation of indomethacin and arginine during combined storage at high humidity conditions[J]. Int J Pharm, 2018, 544(1): 172-180. doi: 10.1016/j.ijpharm.2018.04.026
    [23] HENG WL, SU ML, CHENG H, et al. Incorporation of complexation into a coamorphous system dramatically enhances dissolution and eliminates gelation of amorphous lurasidone hydrochloride[J]. Mol Pharm, 2020, 17(1): 84-97. doi: 10.1021/acs.molpharmaceut.9b00772
    [24] WU W, LӦBMANN K, SCHNITZKEWITZ J, et al. Dipeptides as co-formers in co-amorphous systems[J]. Eur J Pharm Biopharm, 2019, 134: 68-76. doi: 10.1016/j.ejpb.2018.11.016
    [25] HUANG R, HAN J, WANG R, et al. Surfactant-free solid dispersion of BCS class Ⅳ drug in an amorphous chitosan oligosaccharide matrix for concomitant dissolution in vitro-permeability increase[J]. Eur J Pharm Sci, 2019, 130: 147-155. doi: 10.1016/j.ejps.2019.01.031
    [26] WANG RN, HAN JW, JIANG A, et al. Involvement of metabolism-permeability in enhancing the oral bioavailability of curcumin in excipient-free solid dispersions co-formed with piperine[J]. Int J Pharm, 2019, 561: 9-18. doi: 10.1016/j.ijpharm.2019.02.027
    [27] 黄容, 陆昕怡, 韩加伟, 等. 姜黄素-胡椒碱固体分散体的制备与生物利用度研究[J]. 中草药, 2018, 49(19): 4528-4534. doi: 10.7501/j.issn.0253-2670.2018.19.010
    [28] LOBMANN K, LAITINEN R, GROHGANZ H, et al. Coamorphous drug systems: Enhanced physical stability and dissolution rate of indomethacin and naproxen[J]. Mol Pharmaceutics, 2011, 8(5): 1919-1928. doi: 10.1021/mp2002973
    [29] BEVERNAGE J, BROUWERS J, BREWSTER ME, et al. Evaluation of gastrointestinal drug supersaturation and precipitation: Strategies and issues[J]. Int J Pharm, 2013, 453(1): 25-35. doi: 10.1016/j.ijpharm.2012.11.026
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  47
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-14
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2021-05-10
  • 发布日期:  2021-05-15

目录

    /

    返回文章
    返回