留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物三萜类成分生物合成中氧鲨烯环化酶与细胞色素P450的研究进展

田荣 谷巍 韦陈彬 徐飞 邱蓉丽 张阿琴 季媛媛 李桃

田荣, 谷巍, 韦陈彬, 徐飞, 邱蓉丽, 张阿琴, 季媛媛, 李桃. 植物三萜类成分生物合成中氧鲨烯环化酶与细胞色素P450的研究进展[J]. 南京中医药大学学报, 2021, 37(2): 303-310. doi: 10.14148/j.issn.1672-0482.2021.0303
引用本文: 田荣, 谷巍, 韦陈彬, 徐飞, 邱蓉丽, 张阿琴, 季媛媛, 李桃. 植物三萜类成分生物合成中氧鲨烯环化酶与细胞色素P450的研究进展[J]. 南京中医药大学学报, 2021, 37(2): 303-310. doi: 10.14148/j.issn.1672-0482.2021.0303
TIAN Rong, GU Wei, WEI Chen-bin, XU Fei, QIU Rong-li, ZHANG A-qin, JI Yuan-yuan, LI Tao. Advances in Research on the Oxidosqualene Cyclases and Cytochrome P450 Involved in Plant Triterpene Biosynthesis[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(2): 303-310. doi: 10.14148/j.issn.1672-0482.2021.0303
Citation: TIAN Rong, GU Wei, WEI Chen-bin, XU Fei, QIU Rong-li, ZHANG A-qin, JI Yuan-yuan, LI Tao. Advances in Research on the Oxidosqualene Cyclases and Cytochrome P450 Involved in Plant Triterpene Biosynthesis[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(2): 303-310. doi: 10.14148/j.issn.1672-0482.2021.0303

植物三萜类成分生物合成中氧鲨烯环化酶与细胞色素P450的研究进展

doi: 10.14148/j.issn.1672-0482.2021.0303
基金项目: 

国家自然科学基金 82073958

国家自然科学基金 81673534

中医药公共卫生服务补助专项 财社〔2018〕43号

医疗服务与保障能力提升补助资金(中医药事业传承与发展部分) 财社〔2019〕39号

江苏省中药资源产业化过程协同创新中心项目 ZDXM-3-24

详细信息
    作者简介:

    田荣,女,博士研究生,E-mail: tianrong0128@163.com

    通讯作者:

    谷巍,女,教授,主要从事中药资源生产与合成生物学研究,E-mail: guwei9926@126.com

  • 中图分类号: R282.71

Advances in Research on the Oxidosqualene Cyclases and Cytochrome P450 Involved in Plant Triterpene Biosynthesis

  • 摘要: 三萜是许多药用植物的活性成分,由于结构相对复杂,植物中含量较低,通过提取分离或化学合成难以获得,其应用受到限制。目前对三萜类成分的生物合成研究已取得一定的进展,其中氧鲨烯环化酶(OSC)可催化2, 3-氧化鲨烯环化生成三萜类前体物质,细胞色素P450(CYP450)主要参与三萜的后修饰过程,对三萜的多样性起着关键作用。通过OSC和CYP450在三萜生物合成中的催化功能的综述,以期为进一步探索OSC和CYP450在三萜生物合成中的功能研究提供思路。

     

  • 图  1  三萜生物合成路径图

    注:AACT.乙酰辅酶A酰基转移酶(Acetyl-CoA acetyltrans-ferase);HMGS.羟甲基戊二酰CoA合酶(3-Hydroxy-3-methylglutaryl-CoA synthase);HMGR.羟甲基戊二酰CoA还原酶(Hydroxymethyl-glutaryl-CoA reductase);MK.甲羟戊酸激酶(Meval-onate kinase);PMK.二氧磷基MVA激酶(Phosphomevalonate kinase);MVD.甲羟戊酸-5-焦磷酸脱羧酶(Mevalonate-5-pyrophosphate decarboxylase);IDI.异戊烯基二磷酸异构酶(Lisopentenyl diphosphate isomerase);FPPS.法呢基焦磷酸合酶(Farnesyl pyrophosphate synthase);SS.鲨烯合成酶(Squalene synthetase);SE.鲨烯环氧酶(Squalene epoxidase);OSC.氧鲨烯环化酶(Oxidosqualene cyclases);LS.羊毛甾醇合成酶(Lanosterol synthase);DS.达玛烯合成酶(Dammarenediol synthase);CS.葫芦二烯醇合酶(Cucurbitadienol synthase);CAS.环阿屯醇合成酶(Cycloartenol synthase);PS.帕克醇合酶(Parkeol synthase);OS.籼稻醇合酶(Orysatinol synthase);β-AS.β-香树素合成酶(β-Amyrin synthase);LUS.羽扇醇合成酶(Lupeol synthase);α-AS.α-香树脂醇合成酶(α-Amyrin synthase);FS.木栓酮合成酶(Friedelane synthase)

  • [1] CHEN XW, YANG XQ. Characterization of orange oil powders and oleogels fabricated from emulsion templates stabilized solely by a natural triterpene saponin[J]. J Agric Food Chem, 2019, 67(9): 2637-2646. doi: 10.1021/acs.jafc.8b04588
    [2] LIU L, XU FR, WANG YZ. Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review[J]. J Ethnopharmacol, 2020, 263: 112792. doi: 10.1016/j.jep.2020.112792
    [3] XIAO SL, TIAN ZY, WANG YF, et al. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives[J]. Med Res Rev, 2018, 38(3): 951-976. doi: 10.1002/med.21484
    [4] 张园娇, 张越, 陈雨萱, 等. 枇杷叶不同组分提取物在多种疾病中的作用及机制研究[J]. 南京中医药大学学报, 2020, 36(4): 467-471. https://www.cnki.com.cn/Article/CJFDTOTAL-NJZY202004010.htm
    [5] LEVEAU A, REED J, QIAO X, et al. Towards take-all control: A C-21β oxidase required for acylation of triterpene defence compounds in oat[J]. New Phytol, 2019, 221(3): 1544-1555. doi: 10.1111/nph.15456
    [6] GU W, GENG C, XUE WD, et al. Characterization and function of the 3-hydroxy-3-methylglutaryl-CoA reductase gene in Alisma orientale (Sam. ) Juz. and its relationship with protostane triterpene production[J]. Plant Physiol Biochem, 2015, 97: 378-389. doi: 10.1016/j.plaphy.2015.10.031
    [7] TIAN R, GU W, GU YC, et al. Methyl jasmonate promote protostane triterpenes accumulation by up-regulating the expression of squalene epoxidases in Alisma orientale[J]. Sci Rep, 2019, 9(1): 18139. doi: 10.1038/s41598-019-54629-6
    [8] GHOSH S. Biosynthesis of structurally diverse triterpenes in plants: The role of oxidosqualene cyclases[J]. Proc Indian Natl Sci Acad, 2016, 82(4): 1-10. http://www.researchgate.net/profile/Sumit_Ghosh6/publication/307921284_Biosynthesis_of_Structurally_Diverse_Triterpenes_in_Plants_the_Role_of_Oxidosqualene_Cyclases/links/57f2a0aa08ae8da3ce51a967.pdf
    [9] ORTIZ DE MONTELLANO PR. Acetylenes: Cytochrome P450 oxidation and mechanism-based enzyme inactivation[J]. Drug Metab Rev, 2019, 51(2): 162-177. doi: 10.1080/03602532.2019.1632891
    [10] LIN YL, LEE YR, TSAO NW, et al. Characterization of the 2, 3-oxidosqualene cyclase gene from Antrodia cinnamomea and enhancement of cytotoxic triterpenoid compound production[J]. J Nat Prod, 2015, 78(7): 1556-1562. doi: 10.1021/acs.jnatprod.5b00020
    [11] SCOTT NA, SHARPE LJ, CAPELL-HATTAM IM, et al. The cholesterol synthesis enzyme lanosterol 14α-demethylase is post-translationally regulated by the E3 ubiquitin ligase MARCH6[J]. Biochem J, 2020, 477(2): 541-555. doi: 10.1042/BCJ20190647
    [12] KUMAR A, FOGELMAN E, WEISSBERG M, et al. Lanosterol synthase-like is involved with differential accumulation of steroidal glycoalkaloids in potato[J]. Planta, 2017, 246(6): 1189-1202. doi: 10.1007/s00425-017-2763-z
    [13] ZHANG DH, LI N, YU XY, et al. Overexpression of the homologous lanosterol synthase gene in ganoderic acid biosynthesis in Ganoderma lingzhi[J]. Phytochemistry, 2017, 134: 46-53. doi: 10.1016/j.phytochem.2016.11.006
    [14] LU C, ZHAO S, WEI G, et al. Functional regulation of ginsenoside biosynthesis by RNA interferences of a UDP-glycosyltransferase gene in Panax ginseng and Panax quinquefolius[J]. Plant Physiol Biochem, 2017, 111: 67-76. doi: 10.1016/j.plaphy.2016.11.017
    [15] 梁会超, 高丽丽, 胡宗风, 等. 人参达玛烯二醇-Ⅱ合酶在酿酒酵母中的表达、定位及功能研究[J]. 药学学报, 2016, 51(6): 998-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXB201606023.htm
    [16] OHYAMA K, SUZUKI M, KIKUCHI J, et al. Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis[J]. PNAS, 2009, 106(3): 725-730. doi: 10.1073/pnas.0807675106
    [17] QIAO J, LUO ZL, GU Z, et al. Identification of a novel specific cucurbitadienol synthase allele in Siraitia grosvenorii correlates with high catalytic efficiency[J]. Molecules, 2019, 24(3): 627. doi: 10.3390/molecules24030627
    [18] DAVIDOVICH-RIKANATI R, SHALEV L, BARANES N, et al. Recombinant yeast as a functional tool for understanding bitterness and cucurbitacin biosynthesis in watermelon (Citrullus spp. )[J]. Yeast, 2015, 32(1): 103-114. http://www.onacademic.com/detail/journal_1000037199413510_cc7e.html
    [19] ZHAO H, TANG Q, MO CM, et al. Cloning and characterization of squalene synthase and cycloartenol synthase from Siraitia grosvenorii[J]. Acta Pharm Sin B, 2017, 7(2): 215-222. doi: 10.1016/j.apsb.2016.06.012
    [20] YANG Y, GE F, SUN Y, et al. Strengtheningtriterpene saponins biosynthesis by over-expression of farnesyl pyrophosphate synthase gene and RNA interference of cycloartenol synthase gene in Panax notoginseng cells[J]. Molecules, 2017, 22(4): E581. doi: 10.3390/molecules22040581
    [21] XUE ZY, TAN ZW, HUANG AC, et al. Identification of key amino acid residues determining product specificity of 2, 3-oxidosqualene cyclase in Oryza species[J]. New Phytol, 2018, 218(3): 1076-1088. doi: 10.1111/nph.15080
    [22] 刘艳. 雷公藤三萜合成途径关键酶基因克隆与表达分析[D]. 杨凌: 西北农林科技大学, 2018.
    [23] KAREN CARDOSO B, LINE MARKO DE OLIVEIRA H, ZONTA MELO U, et al. Antioxidant activity of α and β-amyrin isolated from Myrcianthes pungens leaves[J]. Nat Prod Res, 2020, 34(12): 1777-1781. doi: 10.1080/14786419.2018.1525715
    [24] YIN J, YANG J, MA HS, et al. Expression characteristics and function of CAS and a new beta-amyrin synthase in triterpenoid synthesis in birch (Betula platyphylla Suk. )[J]. Plant Sci, 2020, 294: 110433. doi: 10.1016/j.plantsci.2020.110433
    [25] LIU YL, ZHAO ZJ, XUE ZY, et al. An intronless β-amyrin synthase gene is more efficient in oleanolic acid accumulation than its paralog in Gentiana straminea[J]. Sci Rep, 2016, 6: 33364. doi: 10.1038/srep33364
    [26] BESERRA FP, VIEIRA AJ, GUSHIKENL FS, et al. Lupeol, a dietary triterpene, enhances wound healing in streptozotocin-induced hyperglycemic rats with modulatory effects on inflammation, oxidative stress, and angiogenesis[J]. Oxid Med Cell Longev, 2019, 2019: 3182627. http://www.ncbi.nlm.nih.gov/pubmed/31210838
    [27] SHIRAZI Z, AALAMI A, TOHIDFAR M, et al. Triterpenoid gene expression and phytochemical content in Iranian licorice under salinity stress[J]. Protoplasma, 2019, 256(3): 827-837. doi: 10.1007/s00709-018-01340-4
    [28] BUSTA L, SERRA O, KIM OT, et al. Oxidosqualene cyclases involved in the biosynthesis of triterpenoids in Quercus suber cork[J]. Sci Rep, 2020, 10(1): 8011. doi: 10.1038/s41598-020-64913-5
    [29] GUHLING O, HOBL B, YEATS T, et al. Cloning and characterization of a lupeol synthase involved in the synthesis of epicuticular wax crystals on stem and hypocotyl surfaces of Ricinus communis[J]. Arch Biochem Biophys, 2006, 448(1/2): 60-72. http://europepmc.org/abstract/MED/16445885
    [30] BRENDOLISE C, YAUK YK, EBERHARD ED, et al. An unusual plant triterpene synthase with predominant α-amyrin-producing activity identified by characterizing oxidosqualene cyclases from Malus domestica[J]. FEBS J, 2011, 278(14): 2485-2499. doi: 10.1111/j.1742-4658.2011.08175.x
    [31] SRISAWAT P, FUKUSHIMA EO, YASUMOTO S, et al. Identification of oxidosqualene cyclases from the medicinal legume tree Bauhinia forficata: A step toward discovering preponderant α-amyrin-producing activity[J]. New Phytol, 2019, 224(1): 352-366. doi: 10.1111/nph.16013
    [32] ZHOU J, HU T, GAO L, et al. Friedelane-type triterpene cyclase in celastrol biosynthesis from Tripterygium wilfordii and its application for triterpenes biosynthesis in yeast[J]. New Phytol, 2019, 223(2): 722-735. doi: 10.1111/nph.15809
    [33] NELSON D, WERCK-REICHHART D. A P450-centric view of plant evolution[J]. Plant J, 2011, 66(1): 194-211. doi: 10.1111/j.1365-313X.2011.04529.x
    [34] ZHENG X, LI P, LU X. Research advances in cytochrome P450-catalysed pharmaceutical terpenoid biosynthesis in plants[J]. J Exp Bot, 2019, 70(18): 4619-4630. doi: 10.1093/jxb/erz203
    [35] WANG Y, LI XY, LIN YP, et al. Structural variation, functional differentiation, and activity correlation of the cytochrome P450 gene superfamily revealed in ginseng[J]. Plant Genome, 2018, 11(3): 170106. doi: 10.3835/plantgenome2017.11.0106
    [36] GEISLER K, HUGHES RK, SAINSBURY F, et al. Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants[J]. Proc Natl Acad Sci USA, 2013, 110(35): E3360-E3367. doi: 10.1073/pnas.1309157110
    [37] KRANZ-FINGER S, MAHMOUD O, RICKLEFS E, et al. Insights into the functional properties of the marneral oxidase CYP71A16 from Arabidopsis thaliana[J]. Biochim Biophys Acta Proteins Proteom, 2018, 1866(1): 2-10. doi: 10.1016/j.bbapap.2017.07.008
    [38] KROKIDA A, DELIS C, GEISLER K, et al. A metabolic gene cluster in Lotus japonicus discloses novel enzyme functions and products in triterpene biosynthesis[J]. New Phytol, 2013, 200(3): 675-690. doi: 10.1111/nph.12414
    [39] ZHOU Y, MA YS, ZENG JG, et al. Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae[J]. Nat Plants, 2016, 2: 16183. doi: 10.1038/nplants.2016.183
    [40] 李翔宇, 王助乾, 孙春玉, 等. 植物细胞色素P450s及其在植物新陈代谢中的作用[J]. 安徽农业科学, 2016, 44(13): 129-134. doi: 10.3969/j.issn.0517-6611.2016.13.043
    [41] FUKUSHIMA EO, SEKI H, OHYAMA K, et al. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis[J]. Plant Cell Physiol, 2011, 52(12): 2050-2061. doi: 10.1093/pcp/pcr146
    [42] CASTILLO DA, KOLESNIKOVA MD, MATSUDA SP. An effective strategy for exploring unknown metabolic pathways by genome mining[J]. J Am Chem Soc, 2013, 135(15): 5885-5894. doi: 10.1021/ja401535g
    [43] LIU Q, KHAKIMOV B, CARDENAS PD, et al. The cytochrome P450 CYP72A552 is key to production of hederagenin-based saponins that mediate plant defense against herbivores[J]. New Phytol, 2019, 222(3): 1599-1609. doi: 10.1111/nph.15689
    [44] 崔会婷. 蒺藜苜蓿细胞色素P450基因的克隆及功能分析[D]. 北京: 中国农业科学院, 2018.
    [45] TZIN V, SNYDER JH, YANG DS, et al. Integrated metabolomics identifies CYP72A67 and CYP72A68 oxidases in the biosynthesis of Medicago truncatula oleanate sapogenins[J]. Metabolomics, 2019, 15(6): 1-20. doi: 10.1007/s11306-019-1542-1
    [46] 王婷. 细胞色素P450 CYP72A154的半理性改造及在甘草次酸酵母合成中的应用研究[D]. 石河子: 石河子大学, 2019.
    [47] FANANI MZ, FUKUSHIMA EO, SAWAI S, et al. Molecularbasis of C-30 product regioselectivity of legume oxidases involved in high-value triterpenoid biosynthesis[J]. Front Plant Sci, 2019, 10: 1520. http://www.ncbi.nlm.nih.gov/pubmed/31850023
    [48] SEKI H, SAWAI S, OHYAMA K, et al. Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin[J]. Plant Cell, 2011, 23(11): 4112-4123. doi: 10.1105/tpc.110.082685
    [49] ZHU M, WANGCX, SUN WT, et al. Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants[J]. Metab Eng, 2018, 45: 43-50. doi: 10.1016/j.ymben.2017.11.009
    [50] MISRA RC, SHARMA S, SANDE EP, et al. Two CYP716A subfamily cytochrome P450 monooxygenases of sweet basil play similar but nonredundant roles in ursane- and oleanane-type pentacyclic triterpene biosynthesis[J]. New Phytol, 2017, 214(2): 706-720. doi: 10.1111/nph.14412
    [51] TAMURA K, SEKI H, SUZUKI H, et al. CYP716A179 functions as a triterpene C-28 oxidase in tissue-cultured stolons of Glycyrrhiza uralensis[J]. Plant Cell Rep, 2017, 36(3): 437-445. doi: 10.1007/s00299-016-2092-x
    [52] PARK SB, CHUN JH, BAN YW, et al. Alteration of Panax ginseng saponin composition by overexpression and RNA interference of the protopanaxadiol 6-hydroxylase gene (CYP716A53v2)[J]. J Ginseng Res, 2016, 40(1): 47-54. doi: 10.1016/j.jgr.2015.04.010
    [53] GWAK YS, HAN JY, CHOI YE. Production of ginsenoside aglycone (protopanaxatriol) and male sterility of transgenic tobacco co-overexpressing three Panax ginseng genes: PgDDS, CYP716A47, and CYP716A53v2[J]. J Ginseng Res, 2019, 43(2): 261-271. http://www.onacademic.com/detail/journal_1000040420876610_e7e8.html
    [54] SUZUKI H, FUKUSHIMA EO, UMEMOTO N, et al. Comparative analysis of CYP716A subfamily enzymes for the heterologous production of C-28 oxidized triterpenoids in transgenic yeast[J]. Plant Biotechnol (Tokyo), 2018, 35(2): 131-139. http://www.researchgate.net/profile/Ery_Fukushima/publication/325936394_Comparative_analysis_of_CYP716A_subfamily_enzymes_for_the_heterologous_production_of_C-28_oxidized_triterpenoids_in_transgenic_yeast/links/5b3192d84585150d23d44d53/Comparative-analysis-of-CYP716A-subfamily-enzymes-for-the-heterologous-production-of-C-28-oxidized-triterpenoids-in-transgenic-yeast.pdf
    [55] DAI ZB, WANG BB, LIU Y, et al. Producing aglycons of ginsenosides in bakers' yeast[J]. Sci Rep, 2014, 4: 3698. http://www.nature.com/articles/srep03698.pdf
    [56] MIETTINEN K, POLLIER J, BUYST D, et al. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis[J]. Nat Commun, 2017, 8: 14153. http://www.onacademic.com/detail/journal_1000039818954010_0796.html
    [57] YASUMOTO S, SEKI H, SHIMIZU Y, et al. Functionalcharacterization of CYP716 family P450 enzymes in triterpenoid biosynthesis in tomato[J]. Front Plant Sci, 2017, 8: 21. doi: 10.3389/fpls.2017.00021/pdf
    [58] GAO Y, ZHANG T, KANG XP, et al. Preliminary study on response and its mechanism of ginsenoside biosynthesis in Panax ginseng to water regulation[J]. China J Chin Mater Med, 2019, 44(13): 2768-2776. http://www.ncbi.nlm.nih.gov/pubmed/31359689
    [59] MOSES T, POLLIER J, ALMAGRO L, et al. Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16α hydroxylase from Bupleurum falcatum[J]. Proc Natl Acad Sci USA, 2014, 111(4): 1634-1639. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910630/pdf/pnas.201323369.pdf
    [60] ZHANG JS, DAI LH, YANG JG, et al. Oxidation of cucurbitadienol catalyzed by CYP87D18 in the biosynthesis of mogrosides from Siraitia grosvenorii[J]. Plant Cell Physiol, 2016, 57(5): 1000-1007. http://www.onacademic.com/detail/journal_1000038614594210_dcae.html
  • 加载中
图(1)
计量
  • 文章访问数:  594
  • HTML全文浏览量:  48
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2021-03-10
  • 发布日期:  2021-03-15

目录

    /

    返回文章
    返回