留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柴胡和白芍醋炙前后组方四逆散对抑郁大鼠粪便代谢组学的比较

莫子晴 蔡皓 段煜 裴科 张雅婷 钮敏洁 王梦晴 于慧

莫子晴, 蔡皓, 段煜, 裴科, 张雅婷, 钮敏洁, 王梦晴, 于慧. 柴胡和白芍醋炙前后组方四逆散对抑郁大鼠粪便代谢组学的比较[J]. 南京中医药大学学报, 2021, 37(2): 216-224. doi: 10.14148/j.issn.1672-0482.2021.0216
引用本文: 莫子晴, 蔡皓, 段煜, 裴科, 张雅婷, 钮敏洁, 王梦晴, 于慧. 柴胡和白芍醋炙前后组方四逆散对抑郁大鼠粪便代谢组学的比较[J]. 南京中医药大学学报, 2021, 37(2): 216-224. doi: 10.14148/j.issn.1672-0482.2021.0216
MO Zi-qing, CAI Hao, DUAN Yu, PEI Ke, ZHANG Ya-ting, NIU Min-jie, WANG Meng-qing, YU Hui. A Comparative Study on Fecal Metabonomics in Depressed Rats Intervened by Sinisan Containing Bupleuri Radix and Paeoniae Radix Alba before and after Vinegar-Processing[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(2): 216-224. doi: 10.14148/j.issn.1672-0482.2021.0216
Citation: MO Zi-qing, CAI Hao, DUAN Yu, PEI Ke, ZHANG Ya-ting, NIU Min-jie, WANG Meng-qing, YU Hui. A Comparative Study on Fecal Metabonomics in Depressed Rats Intervened by Sinisan Containing Bupleuri Radix and Paeoniae Radix Alba before and after Vinegar-Processing[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(2): 216-224. doi: 10.14148/j.issn.1672-0482.2021.0216

柴胡和白芍醋炙前后组方四逆散对抑郁大鼠粪便代谢组学的比较

doi: 10.14148/j.issn.1672-0482.2021.0216
基金项目: 

国家自然科学基金 81673600

江苏省研究生科研创新计划 KYCX18_1637

详细信息
    作者简介:

    莫子晴,女,硕士研究生,E-mail:moqingqin@qq.com

    通讯作者:

    蔡皓,男,副研究员,主要从事中药炮制与复方临床功效相关性以及中药质量控制的研究,E-mail: haocai_98@126.com

  • 中图分类号: R285.5

A Comparative Study on Fecal Metabonomics in Depressed Rats Intervened by Sinisan Containing Bupleuri Radix and Paeoniae Radix Alba before and after Vinegar-Processing

  • 摘要: 目的   应用1H-NMR代谢组学技术探究慢性不可预知温和应激(CUMS)抑郁大鼠粪便代谢组学的变化,评价柴胡和白芍醋炙前后组方四逆散的抗抑郁作用,并探讨四逆散中君药柴胡和臣药白芍醋炙的增效机制及炮制内涵。方法   利用CUMS程序建立大鼠抑郁模型,以1H-NMR为技术手段研究不同给药情况下抑郁大鼠粪便代谢组学的变化。结果   CUMS抑郁大鼠模型复制成功。代谢组学结果表明,与空白组比较,模型组大鼠中共有17种代谢物水平发生变化。与模型组比较,四逆散组及柴胡和白芍醋炙后组方的四逆散组干预后的抑郁大鼠代谢发生显著变化。与四逆散组比较,柴胡和白芍醋炙后组方的四逆散组干预的抑郁大鼠粪便中乳酸、α-葡萄糖、β-葡萄糖、甲酸、乙酸、苏氨酸6种代谢物的水平发生变化,同时对丙酮酸代谢、糖酵解与糖质新生代谢、甲烷代谢、乙醛酸和二羧酸代谢、甘氨酸-丝氨酸-苏氨酸代谢、氨酰合成代谢共6条代谢通路产生影响。结论   柴胡和白芍醋炙后组方的四逆散抗抑郁作用更佳,这可能与能量代谢、氨基酸代谢、免疫调控及肠道菌群有关。

     

  • 图  1  大鼠粪便样本1H-NMR图谱

    C.空白组; M.模型组; SNS.四逆散组; VPSNS.醋炙品组方四逆散组; FLU.阳性药组

    图  2  空白组与模型组大鼠粪便样本的OPLS-DA散点图及相应的模型验证图

    注:C.空白组; M.模型组

    图  3  模型组与四逆散组大鼠粪便样本的OPLS-DA散点图及相应的模型验证图

    注:M.模型组; SNS.四逆散组

    图  4  模型组与醋炙品组方四逆散组大鼠粪便样本的OPLS-DA散点图及相应的模型验证图

    注:M.模型组; VPSNS.醋炙品组方四逆散组

    图  5  四逆散组和醋炙品组方四逆散组大鼠粪便样本的OPLS-DA散点图、相应的模型验证图及系数载荷图

    注:SNS.四逆散组; VPSNS.醋炙品组方四逆散组

    图  6  所有组别大鼠粪便样本的OPLS-DA散点图

    C.空白组; M.模型组; SNS.四逆散组; VPSNS.醋炙品组方四逆散组; FLU.阳性药组

    图  7  与CUMS抑郁模型大鼠相关的代谢通路以及与四逆散醋炙增效相关的代谢通路

    表  1  大鼠行为学指标结果

    组别 体质量/g 糖水偏好率/% 强迫游泳时间/s
    造模前 造模后 造模前 造模后 造模前 造模后
    空白组 260.41±9.87 323.76±9.63 73.83±9.72 83.73±4.76 70.12±25.92 55.67±29.61
    模型组 247.70±15.95 286.16±10.04** 68.51±29.28 41.08±8.05** 46.22±10.86 109.59±18.63**
    四逆散组 254.07±15.86 315.16±9.25## 80.63±16.62 64.61±10.65## 54.20±28.04 92.01±38.34##
    醋炙品组方四逆散组 258.00±15.86 314.29±10.51## 78.28±12.41 74.73±2.34## 56.23±23.51 70.36±18.46##
    阳性药组 256.00±13.80 309.73±8.78## 83.05±16.58 72.12±4.48## 51.98±18.92 68.47±38.36##
    注:与空白组比较, **P < 0.01;与模型组比较, ##P < 0.01。
    下载: 导出CSV

    表  2  内标及大鼠粪便1H-NMR数据归属

    编号 代谢物 δ1H
    1 DSS 0(s), 0.62(dd), 1.75(m), 2.91(dd)
    2 丁酸 0.88(t), 1.55(m), 2.16(t)
    3 亮氨酸 0.94(d), 0.95(d), 1.67(m), 1.70(m), 1.74(m), 3.73(m)
    4 缬氨酸 0.98(d), 1.03(d), 2.26(m), 3.60(d)
    5 异亮氨酸 0.93(t), 1.00(d), 1.25(m), 1.46(m), 1.97(m), 3.66(d)
    6 丙酸 1.04(t), 2.17(q)
    7 乳酸 1.32(d), 4.11(q)
    8 苏氨酸 1.32(d), 3.58(d), 4.24(m)
    9 乙偶姻 1.37(d), 2.21(s), 4.42(q)
    10 丙氨酸 1.47(d), 3.77(q)
    11 乙酸 1.91(s)
    12 谷氨酸 2.34(dt), 2.04(m), 2.11(m), 3.75(m)
    13 琥珀酸 2.40(s)
    14 天冬氨酸 2.67(dd), 2.80(dd), 3.89(m)
    15 赖氨酸 1.43(m), 1.49(m), 1.71(m), 1.86(m), 1.92(m), 3.01(t), 3.75(t)
    16 甲醇 3.35(s)
    17 甘氨酸 3.55(s)
    18 β-阿拉伯糖 4.51(d), 3.51(dd), 3.66(m)
    19 α-阿拉伯糖 5.26(d), 4.11(m), 3.83(dd)
    20 β-木糖 4.57(d), 3.22(dd), 3.31(t), 3.45(m), 3.92(dd), 3.62(m)
    21 α-木糖 5.19(d), 3.52(dd), 3.43(t), 3.67(m), 3.60(dd), 3.64(m)
    22 β-葡萄糖 4.64(d), 3.24(dd), 3.48(m), 3.41(m), 3.75, 3.90(dd), 3.48(m)
    23 α-葡萄糖 5.23(d), 3.52(dd), 3.71(m), 3.74(m), 3.74, 3.81(dd), 3.84(m)
    24 尿嘧啶 5.79(d), 7.53(d)
    25 延胡索酸 6.51(s)
    26 酪氨酸 3.04(dd), 3.18(dd), 3.93(dd), 6.89(d), 7.18(d)
    27 苯丙氨酸 3.12(dd), 3.27(dd), 3.98(dd), 7.32(m), 7.36(m), 7.42(m)
    28 色氨酸 7.19(t), 7.27(t), 7.53(d), 7.72(d)
    29 尿刊酸 6.39(d), 7.28(d), 7.35(s), 7.86(s)
    30 黄嘌呤 7.91(s)
    31 次黄嘌呤 8.18(s), 8.20(s)
    32 甲酸 8.44(s)
    33 烟酸 7.51(m), 8.24(m), 8.60(dd), 8.93(s)
    注:s.单重峰;d.双重峰;t.三重峰;q.四重峰;dd.双重双峰;m.多重峰
    下载: 导出CSV

    表  3  空白组与模型组存在显著性差异的代谢物及其相关系数

    代谢物 δ1H r P 变化倍数
    次黄嘌呤 8.18(s), 8.20(s) -0.834 0 3.99E-04 0.485 8
    黄嘌呤 7.91(s) -0.905 7 1.99E-05 0.371 8
    苯丙氨酸 3.12(dd), 3.27(dd), 3.98(dd), 7.32(m), 7.36(m), 7.42(m) -0.769 4 2.08E-03 0.523 3
    酪氨酸 3.04(dd), 3.18(dd), 3.93(dd), 6.89(d), 7.18(d) -0.739 8 3.78E-03 0.443 4
    延胡索酸 6.51(s) 0.800 7 1.02E-03 2.380 4
    尿嘧啶 5.79(d), 7.53(d) -0.829 3 4.59E-04 0.343 2
    α-阿拉伯糖 5.26(d), 4.11(m), 3.83(dd) -0.989 2 7.49E-02 0.919 8
    α-木糖 5.19(d), 3.52(dd), 3.43(t), 3.67(m), 3.60(dd), 3.64(m) 0.794 6 1.17E-03 2.478 5
    β-木糖 4.57(d), 3.22(dd), 3.31(t), 3.45(m), 3.92(dd), 3.62(m) 0.761 0 2.52E-03 2.206 9
    甘氨酸 3.55(s) -0.712 6 6.19E-03 0.604 4
    甲醇 3.35 (s) -0.824 4 5.05E-04 0.414 9
    谷氨酸 2.34(dt), 2.04(m), 2.11(m), 3.75(m) -0.671 3 1.20E-02 0.603 4
    乙酸 1.91 (s) -0.946 6 8.59E-07 0.319 1
    丙氨酸 1.47(d), 3.77(q) -0.838 3 3.33E-04 0.429 4
    丙酸 1.04(t), 2.17(q) -0.898 2 2.84E-05 0.606 4
    异亮氨酸 0.93(t), 1.00(d), 1.25(m), 1.46(m), 1.97(m), 3.66(d) -0.802 5 9.39E-05 0.377 1
    丁酸 0.88(t), 1.55(m), 2.16(t) -0.929 4 1.12E-09 0.201 9
    下载: 导出CSV

    表  4  四逆散组和醋炙品组方四逆散组存在显著性差异的代谢物及其相关系数

    代谢物 δ1H r P 变化倍数
    甲酸 8.44(s) 0.693 034 0.010 20 7.349 7
    α-葡萄糖 5.23(d), 3.52(dd), 3.71(m), 3.74(m), 3.74, 3.81(dd), 3.84(m) -0.654 767 0.015 46 0.498 0
    β-葡萄糖 4.64(d), 3.24(dd), 3.48(m), 3.41(m), 3.75, 3.90(dd), 3.48(m) -0.767 294 0.002 46 0.270 2
    乙酸 1.91(s) 0.728 564 0.004 11 1.345 0
    苏氨酸 1.32(d), 3.58(d), 4.24(m) 0.639 519 0.015 96 1.576 9
    乳酸 1.32(d), 4.11(q) 0.627 454 0.020 30 1.457 5
    下载: 导出CSV
  • [1] LEDFORD H. Medical research: If depression were cancer[J]. Nature, 2014, 515(7526): 182-184. doi: 10.1038/515182a
    [2] 陈嘉谟. 本草蒙筌[M]. 北京: 中医古籍出版社, 2009.
    [3] ZHOU J, CAI H, TU S, et al. Identification and analysis of compound profiles of Sinisan based on 'Individual Herb, Herb-Pair, Herbal Formula' before and after processing using UHPLC-Q-TOF/MS coupled with multiple statistical strategy[J]. Molecules, 2018, 23(12): 3128. doi: 10.3390/molecules23123128
    [4] 汪巍, 陈映辉, 王丽娜, 等. 柴胡与醋柴胡疏肝解郁作用比较研究[J]. 中成药, 2014, 36(3): 617-619. doi: 10.3969/j.issn.1001-1528.2014.03.039
    [5] KANG DW, IIHAN ZE, ISERN NG, et al. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders[J]. Anaerobe, 2018, 49: 121-131. doi: 10.1016/j.anaerobe.2017.12.007
    [6] ZUO CC, CAO H, DING FF, et al. Neuroprotective efficacy of different levels of high-frequency repetitive transcranial magnetic stimulation in mice with CUMS-induced depression: Involvement of the p11/BDNF/Homer1a signaling pathway[J]. J Psychiatr Res, 2020, 125: 152-163. doi: 10.1016/j.jpsychires.2020.03.018
    [7] 龚梦鹃, 李春苑, 巫圣乾, 等. 藿香正气口服液干预湿困脾胃证大鼠的血清和粪便代谢组学研究[J]. 中草药, 2017, 48(14): 2889-2894. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201714014.htm
    [8] 郝艳艳, 何盼, 聂春霞, 等. 基于1H-NMR代谢组学技术研究党参不同炮制品对脾虚大鼠的作用机制[J]. 中国中药杂志, 2019, 44(19): 4241-4248. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201919028.htm
    [9] PAN SN, CHEN A, HAN ZH, et al. 1H NMR-based metabonomic study on the effects of epimedium on glucocorticoid-induced osteoporosis[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2016, 1038: 118-126. doi: 10.1016/j.jchromb.2016.10.015
    [10] 龚梦鹃, 巫圣乾, 岳贺, 等. 基于1H-NMR护肝片抗大鼠急性肝损伤的代谢组学研究[J]. 中国药理学通报, 2017, 33(12): 1766-1770. doi: 10.3969/j.issn.1001-1978.2017.12.027
    [11] CHAI YL, WANG J, WANG T, et al. Application of 1H NMR spectroscopy-based metabonomics to feces of cervical cancer patients with radiation-induced acute intestinal symptoms[J]. Radiother Oncol, 2015, 117(2): 294-301. doi: 10.1016/j.radonc.2015.07.037
    [12] 彭淑芹, 徐向东, 赵海霞. 四逆散对抑郁模型大鼠HPA轴、海马BDNF及其受体TrKB的影响[J]. 中国实验方剂学杂志, 2014, 20(5): 145-148. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201405042.htm
    [13] 龚炳, 李飞泽. 四逆散加味治疗慢性心力衰竭合并抑郁症临床观察[J]. 浙江中西医结合杂志, 2017, 27(8): 667-668. doi: 10.3969/j.issn.1005-4561.2017.08.010
    [14] STRASSER B, SPERNER-UNTERWEGER B, FUCHS D, et al. Mechanisms of inflammation-associated depression: Immune influences on tryptophan and phenylalanine metabolisms[J]. Curr Top Behav Neurosci, 2017, 31: 95-115. http://www.ncbi.nlm.nih.gov/pubmed/27278641/
    [15] HAMID AA, PETTIBONE JR, MABROUK OS, et al. Mesolimbic dopamine signals the value of work[J]. Nat Neurosc, 2016, 19(1): 117-126. doi: 10.1038/nn.4173
    [16] WANG YQ, LI R, ZHANG MQ, et al. The neurobiological mechanisms and treatments of REM sleep disturbances in depression[J]. Curr Neuropharmacol, 2015, 13(4): 543-553. doi: 10.2174/1570159X13666150310002540
    [17] 田俊生, 史碧云, 冯光明, 等. 慢性温和不可预知应激抑郁模型大鼠粪便1H-NMR代谢组学研究[J]. 中草药, 2013, 44(22): 3170-3176. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201322016.htm
    [18] 陈晓光, 王本祥, 张洁, 等. 尿嘧啶对单胺氧化酶的抑制作用[J]. 生物化学杂志, 1992, 8(1): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SWHZ199201012.htm
    [19] ADEVA-ANDANY M, LOPEZ-OJEN M, FUNCASTA-CALDERON R, et al. Comprehensive review on lactate metabolism in human health[J]. Mitochondrion, 2014, 17: 76-100. doi: 10.1016/j.mito.2014.05.007
    [20] ZHENG SN, ZHANG SS, YU MY, et al. An 1H-NMR and UPLC-MS-based plasma metabonomic study to investigate the biochemical changes in chronic unpredictable mild stress model of depression[J]. Metabolomics, 2011, 7(3): 413-423. doi: 10.1007/s11306-010-0261-4
    [21] SEMENKOVICH K, BROWN ME, SVRAKIC DM, et al. Depression in type 2 diabetes mellitus: Prevalence, impact, and treatment[J]. Drugs, 2015, 75(6): 577-587. doi: 10.1007/s40265-015-0347-4
    [22] OSTERGAARD L, JORGENSEN MB, KNUDSEN GM. Low on energy? An energy supply-demand perspective on stress and depression[J]. Neurosci Biobehav Rev, 2018, 94: 248-270. doi: 10.1016/j.neubiorev.2018.08.007
    [23] MORRISON DJ, PRESTON T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3): 189-200. doi: 10.1080/19490976.2015.1134082
    [24] CASPANI G, KENNEDY S, FOSTER JA, et al. Gut microbial metabolites in depression: Understanding the biochemical mechanisms[J]. Microb Cell, 2019, 6(10): 454-481. doi: 10.15698/mic2019.10.693
    [25] 黄馨仪, 郭飞, 曾祥昌, 等. 短链脂肪酸作为信号分子在肠道炎症中的研究进展[J]. 中国临床药理学与治疗学, 2019, 24(11): 1293-1299. doi: 10.12092/j.issn.1009-2501.2019.11.013
    [26] MAES M, VERKERK R, VANDOOLAEGHE E, et al. Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine, alanine and arginine in treatment-resistant depression: Modulation by treatment with antidepressants and prediction of clinical responsivity[J]. Acta Psychiatr Scand, 1998, 97(4): 302-308. doi: 10.1111/j.1600-0447.1998.tb10004.x
    [27] 李仁德, 李光玉, 王凯英. 苏氨酸对动物的生物学作用研究进展[J]. 饲料工业, 2017, 38(8): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-FEED201708010.htm
    [28] 徐玲, 马红艳, 李佳, 等. 富生酮氨基酸饮食对高脂诱导的小鼠胰岛素抵抗的影响[J]. 中华内分泌代谢杂志, 2016, 32(5): 399-404. doi: 10.3760/cma.j.issn.1000-6699.2016.05.010
    [29] 刘月涛, 胡英还, 秦雪梅. 黄芪建中汤治疗大鼠慢性萎缩性胃炎的代谢组学研究[J]. 中草药, 2018, 49(10): 2312-2319. doi: 10.7501/j.issn.0253-2670.2018.10.011
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  27
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-05
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2021-03-10
  • 发布日期:  2021-03-15

目录

    /

    返回文章
    返回