留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

莲子心新碱对肠系膜血管平滑肌收缩的抑制作用及分子机制

张军利 肖敏 王鹏 张弦 潘扬 杨光明

张军利, 肖敏, 王鹏, 张弦, 潘扬, 杨光明. 莲子心新碱对肠系膜血管平滑肌收缩的抑制作用及分子机制[J]. 南京中医药大学学报, 2019, 35(3): 313-318.
引用本文: 张军利, 肖敏, 王鹏, 张弦, 潘扬, 杨光明. 莲子心新碱对肠系膜血管平滑肌收缩的抑制作用及分子机制[J]. 南京中医药大学学报, 2019, 35(3): 313-318.
ZHANGJun-li, XIAOMin, WANGPeng, ZHANGXian, PANYang, YANGGuang-ming. The Inhibitory Effect and Mechanism of Neoliensinine on the Contraction of Mesenteric Vascular Smooth Muscle[J]. Journal of Nanjing University of traditional Chinese Medicine, 2019, 35(3): 313-318.
Citation: ZHANGJun-li, XIAOMin, WANGPeng, ZHANGXian, PANYang, YANGGuang-ming. The Inhibitory Effect and Mechanism of Neoliensinine on the Contraction of Mesenteric Vascular Smooth Muscle[J]. Journal of Nanjing University of traditional Chinese Medicine, 2019, 35(3): 313-318.

莲子心新碱对肠系膜血管平滑肌收缩的抑制作用及分子机制

The Inhibitory Effect and Mechanism of Neoliensinine on the Contraction of Mesenteric Vascular Smooth Muscle

  • 摘要: 目的 研究莲子心新碱(Neo)对小鼠肠系膜血管及血管平滑肌细胞(VSMCs)收缩的抑制作用;并通过观察其对肌球蛋白轻链(MLC20)磷酸化和RhoA相关蛋白激酶(ROCK1)表达的影响,初步探讨引起该抑制的作用机制。方法 采用离体微血管张力测定仪观察高钾溶液(KCl)对经Neo预处理后肠系膜血管收缩的影响,并通过Urea/glycerol-PAGE法检测其MLC20磷酸化水平的变化。同时,利用成像分析技术考察高钾溶液对经Neo预处理后VSMCs收缩的影响,并通过细胞免疫荧光法测定VSMCs中ROCK1蛋白的表达水平。结果 经Neo预处理后的肠系膜血管能明显抑制高钾溶液引起的收缩,其IC50值为6.019 μmol/L;且可阻断高钾溶液产生MLC20磷酸化。另外,与模型组(KCl)VSMCs的长度(40.94±1.94)μm相比,药物组(Neo+KCl)VSMCs的长度(44.95±5.15)μm显著延长(P<0.01),其ROCK1蛋白的表达也明显下降。结论 Neo对肠系膜血管平滑肌收缩具有明显的抑制作用,其作用机制可能与阻断平滑肌MLC20磷酸化和下调其ROCK1蛋白表达有关。

     

  • [1] SHEN-MILLER J. Sacred lotus, the long-living fruits of china antique [J]. Seed Sci Res, 2002, 12(3): 131-143.
    [2] 国家药典委员会.中华人民共和国药典[M].北京:中国医药科技出版社,2015: 273-276.
    [3] 何锦婷, 虞舜. 莲子心的现代临床应用 [J]. 长春中医药大学学报, 2012, 28(3): 544-546.
    [4] YANG GM, SUN J, PAN Y, et al. Isolation and identification of a tribenzylisoquinoline alkaloid from nelumbo nucifera, gaertn, a novel potential smooth muscle relaxant [J]. Fitoterapia, 2018, 124: 58-65.
    [5] SAKAI T, HOSOYAMADA Y. Are the precapillary sphincters and metarterioles universal components of the microcirculation? [J]. J Physiol Sci, 2013, 63(5): 319-331.
    [6] HEAGERTY AM, HEERKENS EH, IZZARD AS. Small artery structure and function in hypertension [J]. J Cell Mol Med, 2010, 14(5): 1037-1043.
    [7] OWENS GK, KUMAR MS, WAMHOFF BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease [J]. Physiol Rev, 2004, 84(3): 767-801.
    [8] REZZANI R, PORTERI E, DE CIUCEIS C, et al. Effects of melatonin and pycnogenol on small artery structure and function in spontaneously hypertensive rats [J]. Hypertension, 2010, 55(6): 1373-1380.
    [9] BRIDGES LE, WILLIAMS CL, POINTER MA, et al. Mesenteric artery contraction and relaxation studies using automated wire myography [J]. JV Visual Exper, 2011, 22(55): 311-329.
    [10] MATIA-JOCA RP, JOCA HC, RIBEIRO FJ, et al. Investigation of terpinen-4-ol effects on vascular smooth muscle relaxation [J]. Life Sci, 2014, 115(1/2): 52-58.
    [11] HE WQ, QIAO YN, ZHANG CH, et al. Role of myosin light chain kinase in regulation of basal blood pressure and maintenance of salt of salt-induced hypertension [J]. J Physiol Heart Circul Physiol, 2011, 301(2): 584-591.
    [12] HATHAWAY DR, HAEBERLE JR. A radioimmunoblotting method for measuring myosin light chain phosphorylation levels in smooth muscle [J]. Am J Physiol, 1985, 249(3): C345-C350.
    [13] MURTHY KS. Signaling for contraction and relaxation in smooth muscle of the gut [J]. Ann Rev Physiol, 2006, 68(1): 345-374.
    [14] 李浩, 张苏丽, 杨艳, 等. 利用微血管环技术检测肠系膜动脉三级分支张力的方法 [J]. 中国应用生理学杂志, 2014, 30(3): 214-217.
    [15] 李秋影. 血管环模型的研究进展 [J]. 医学综述, 2011, 17(3): 339-342.
    [16] SOBIESZEK A, JERTSCHIN P. Urea‐glycerol‐acrylamide gel electrophoresis of acidic low molecular weight muscle proteins: rapid determination of myosin light chain phosphorylation in myosin, actomyosin and whole muscle samples [J]. Electrophoresis, 1986, 7(9): 417-425.
    [17] PERRIE WT, PERRY SV. An electrophoretic study of the low-molecular-weight components of myosin [J]. Biochem J, 1970, 119(1): 31-38.
    [18] WALSH MP. Vascular smooth muscle myosin light chain diphosphorylation: mechanism, function, and pathological implications [J]. Iubmb Life, 2011, 63(11): 987-1000.
    [19] HE WQ, PENG YJ, ZHANG WC, et al. Myosin light chain kinase is central to smooth muscle contraction and required for gastrointestinal motility in mice [J]. Gastroenterology, 2008, 135(2): 610-620.
    [20] SOMLYO AP, SOMLYO AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin Ⅱ: modulated by G proteins, kinases, and myosin phosphatase [J]. Physiol Rev, 2003, 83: 1325-1358.
    [21] TRYBUS KM, WARSHAW DM. Regulation of the interaction between smooth muscle myosin and actin [J]. J Cell Sci Suppl, 1991, 14(2): 87-89.
    [22] WAMHOFF BR, BOWLES DK, MCDONALD OG, et al. L-type voltage-gated Ca2+ channels modulate expression of smooth muscle differentiation marker genes via a Rho kinase/myocardin/SRF-dependent mechanism [J]. Circul Res, 2004, 95(4): 406-414.
    [23] 张婷, 周江睿, 王云霞. RhoA/ROCK信号通路对血管平滑肌收缩的调节作用及研究进展 [J]. 现代生物医学进展, 2010, 10(12): 2367-2370.
  • 加载中
计量
  • 文章访问数:  620
  • HTML全文浏览量:  7
  • PDF下载量:  590
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-05-10

目录

    /

    返回文章
    返回