留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模式生物斑马鱼在中药活性筛选和毒性评价中的应用进展与展望

李懿 刘夏进 宿树兰 余黎 朱悦 钱大玮 赵明 段金廒

李懿, 刘夏进, 宿树兰, 余黎, 朱悦, 钱大玮, 赵明, 段金廒. 模式生物斑马鱼在中药活性筛选和毒性评价中的应用进展与展望[J]. 南京中医药大学学报, 2020, 36(5): 715-720.
引用本文: 李懿, 刘夏进, 宿树兰, 余黎, 朱悦, 钱大玮, 赵明, 段金廒. 模式生物斑马鱼在中药活性筛选和毒性评价中的应用进展与展望[J]. 南京中医药大学学报, 2020, 36(5): 715-720.
LI Yi, LIU Xia-jin, SU Shu-lan, YU Li, ZHU Yue, QIAN Da-wei, ZHAO Ming, DUAN Jin-ao. Application Progress and Prospect of Model Organism Zebrafish in Activity Screening and Toxicity Evaluation of Traditional Chinese Medicine[J]. Journal of Nanjing University of traditional Chinese Medicine, 2020, 36(5): 715-720.
Citation: LI Yi, LIU Xia-jin, SU Shu-lan, YU Li, ZHU Yue, QIAN Da-wei, ZHAO Ming, DUAN Jin-ao. Application Progress and Prospect of Model Organism Zebrafish in Activity Screening and Toxicity Evaluation of Traditional Chinese Medicine[J]. Journal of Nanjing University of traditional Chinese Medicine, 2020, 36(5): 715-720.

模式生物斑马鱼在中药活性筛选和毒性评价中的应用进展与展望

Application Progress and Prospect of Model Organism Zebrafish in Activity Screening and Toxicity Evaluation of Traditional Chinese Medicine

  • 摘要: 斑马鱼作为一种非哺乳类模式生物,因其具有体积小、易饲养、发育快速、繁殖力强、便于观察等优势,在医药研究领域得到了广泛应用。近年来,随着技术和方法的不断改进,模式生物斑马鱼在中药领域的应用也逐渐深入,特别是对中药复杂的有效成分、活性物质以及毒性的评价与筛选。斑马鱼作为一种整体动物模型,能够较为客观地对中药活性物质以及毒性进行评价,实现快速有效的高通量筛选。通过对近年来国内外相关文献的查阅与归纳整理,综述了模式生物斑马鱼在中药活性筛选和毒性评价中的应用进展,主要从抗炎、抗血管生成、促血管生成、抗骨质疏松、抗酒精性肝损伤、抗神经性疾病等活性成分筛选以及肝毒性和胚胎毒性等方面进行总结分析,以期为中药安全性与有效性评价提供新的方法和技术。

     

  • [1] 孙智慧, 贾顺姬, 孟安明. 斑马鱼: 在生命科学中畅游[J]. 生命科学, 2006, 18(5): 431-436.
    [2] STREISINGER G, WALKER C, DOWER N, et al. Production of clones of homozygous diploid zebra fish (Brachydanio rerio)[J]. Nature, 1981, 291(5813): 293-296.
    [3] 全珊珊,吴新荣. 斑马鱼, 人类疾病研究的理想模式动物[J]. 生命的化学, 2008, 28(3): 260-263.
    [4] 杨丽玲, 余林中. 斑马鱼: 一种可用于中药抗炎免疫药理研究的模式生物[J]. 中药药理与临床, 2012, 28(2): 175-178.
    [5] GE H, TANG H, LIANG Y, et al. Rhein attenuates inflammation through inhibition of NF-κB and NALP3 inflammasome in vivo<\i> and in vitro<\i>[J]. Drug Des Devel Ther, 2017, 11: 1663-1671.
    [6] GUO DL, CHEN JF, TAN L, et al. Terpene glycosides from Sanguisorba officinalis<\i> and their anti-inflammatory effects[J]. Molecules, 2019, 24(16): 2906.
    [7] ZHOU H, CAO H, ZHENG Y, et al. Liang-Ge-San, a classic traditional Chinese medicine formula, attenuates acute inflammation in zebrafish and RAW 264.7 cells[J]. J Ethnopharmacol, 2020, 249: 112427.
    [8] ZHANG Y, TAKAGI N, YUAN B, et al. The protection of indolealkylamines from LPS-induced inflammation in zebrafish[J]. J Ethnopharmacol, 2019, 243: 112122.
    [9] GE H, TANG H, LIANG Y, et al. Rhein attenuates inflammation through inhibition of NF-κB and NALP3 inflammasome in vivo<\i> and in vitro<\i>[J]. Drug Des Devel Ther, 2017, 11: 1663-1671.
    [10] ISOGAI S, HORIGUCHI M, WEINSTEIN BM. The vascular anatomy of the developing zebrafish: An atlas of embryonic and early larval development[J]. Dev Biol, 2001, 230(2): 278-301.
    [11] NY A, AUTIERO M, CARMELIET P. Zebrafish and Xenopus<\i> tadpoles: Small animal models to study angiogenesis and lymphangiogenesis[J]. Exp Cell Res, 2006, 312(5): 684-693.
    [12] HU WH, CHAN GKL, LOU JS, et al. The extract of Polygoni Cuspidati Rhizoma et Radix<\i> suppresses the vascular endothelial growth factor-induced angiogenesis[J]. Phytomedicine, 2018, 42: 135-143.
    [13] 何育霖, 杨雨婷, 何贝轩, 等. 紫草素对斑马鱼胚胎毒性和血管抑制作用[J]. 中成药, 2016, 38(2): 241-245.
    [14] ALEX D, LAM IK, LIN Z, et al. Indirubin shows anti-angiogenic activity in an in vivo<\i> zebrafish model and an in vitro<\i> HUVEC model[J]. J Ethnopharmacol, 2010, 131(2): 242-247.
    [15] CHEN Y, CHEN PD, BAO BH, et al. Anti-thrombotic and pro-angiogenic effects of Rubia cordifolia<\i> extract in zebrafish[J]. J Ethnopharmacol, 2018, 219: 152-160.
    [16] LI J, ZHANG J, ZOU L, et al. Pro-angiogenic effects of Ilexsaponin A1 on human umbilical vein endothelial cells in vitro<\i> and zebrafish in vivo<\i>[J]. Phytomedicine, 2017, 36: 229-237.
    [17] ZHOU ZY, XIAO Y, ZHAO WR, et al. Pro-angiogenesis effect and transcriptome profile of Shuxinyin formula in zebrafish[J]. Phytomedicine, 2019, 65: 153083.
    [18] ZHANG JY, LIU MQ, HUANG MH, et al. Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway[J]. Pharmacol Res, 2019, 144: 292-305.
    [19] 詹扬, 韦英杰, 孙娥, 等. 基于斑马鱼模型的朝鲜淫羊藿抗骨质疏松活性部位筛选[J]. 中草药, 2014, 45(14): 2036-2041.
    [20] ZHANG S, ZHANG Q, ZHANG D, et al. Anti-osteoporosis activity of a novel Achyranthes bidentata<\i> polysaccharide via stimulating bone formation[J]. Carbohydr Polym, 2018, 184: 288-298.
    [21] LUO S, YANG Y, CHEN J, et al. Tanshinol stimulates bone formation and attenuates dexamethasone-induced inhibition of osteogenesis in larval zebrafish[J]. J Orthop Translat, 2016, 4: 35-45.
    [22] MILLER AM, HORIGUCHI N, JEONG WI, et al. Molecular mechanisms of alcoholic liver disease: Innate immunity and cytokines[J]. Alcohol Clin Exp Res, 2011, 35(5): 787-793.
    [23] GUO F, ZHENG K, BENED-UBIETO R, et al. The lieber-DeCarli diet-A flagship model for experimental alcoholic liver disease[J]. Alcohol Clin Exp Res, 2018, 42(10): 1828-1840.
    [24] HOWARTH DL, PASSERI M, SADLER KC. Drinks like a fish: Using zebrafish to understand alcoholic liver disease[J]. Alcohol Clin Exp Res, 2011, 35(5): 826-829.
    [25] LIN JN, CHANG LL, LAI CH, et al. Development of an animal model for alcoholic liver disease in zebrafish[J]. Zebrafish, 2015, 12(4): 271-280.
    [26] 周振婷. 橙皮苷对斑马鱼酒精性脂肪肝的治疗作用及其机制研究[D]. 广州: 南方医科大学, 2017.
    [27] 夏青, 韩利文, 张云, 等. 基于斑马鱼模型的柴胡皂苷a保肝作用与肝毒性研究[J]. 中国中药杂志, 2019, 44(13): 2662-2666.
    [28] KALUEFF AV, GEBHARDT M, STEWART AM, et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond[J]. Zebrafish, 2013, 10(1): 70-86.
    [29] BUENAFE OE, ORELLANA-PAUCAR A, MAES J, et al. Tanshinone ⅡA exhibits anticonvulsant activity in zebrafish and mouse seizure models[J]. ACS Chem Neurosci, 2013, 4(11): 1479-1487.
    [30] ZHANG S, LIU X, SUN M, et al. Reversal of reserpine-induced depression and cognitive disorder in zebrafish by sertraline and Traditional Chinese Medicine (TCM)[J]. Behav Brain Funct, 2018, 14(1): 13.
    [31] 夏婧, 游秋云, 黄攀攀, 等. 中药酸枣仁对斑马鱼睡眠剥夺模型的行为学及神经递质受体的影响[J]. 时珍国医国药, 2019, 30(9): 2061-2064.
    [32] ZHAO C, JIA Z, LI E, et al. Hepatotoxicity evaluation of Euphorbia kansui<\i> on zebrafish larvae in vivo<\i>[J]. Phytomedicine, 2019, 62: 152959.
    [33] ZHAO C, WANG M, JIA Z, et al. Similar hepatotoxicity response induced by Rhizoma Paridis in zebrafish larvae, cell and rat[J]. J Ethnopharmacol, 2020, 250: 112440.
    [34] 全云云, 周忆梦, 刘美辰, 等. 斑马鱼模型筛选何首乌肝毒性的物质基础[J]. 中国实验方剂学杂志, 2019, 25(6): 52-57.
    [35] 姚芳, 张楷承, 曹雨诞, 等. 京大戟醋制前后对斑马鱼胚胎肝、胃肠毒性的影响[J]. 中国中药杂志, 2019, 44(6): 1179-1185.
    [36] 段亚辉, 张云, 王雪, 等. 基于模式生物斑马鱼的款冬叶肝肾毒性比较研究[J]. 中草药, 2019, 50(3): 669-674.
    [37] 付晓春, 沈小莉, 俞航萍, 等. 雷公藤多苷促进斑马鱼肝细胞凋亡的实验研究[J]. 中国医院药学杂志, 2019, 39(10): 1032-1038.
    [38] SUN W, YAN B, WANG R, et al. In vivo<\i> acute toxicity of detoxified Fuzi (lateral root of Aconitum carmichaeli<\i>) after a traditional detoxification process[J]. Excli J, 2018, 17: 889-899.
    [39] WANG T, WANG CX, WU Q, et al. Evaluation of tanshinone ⅡA developmental toxicity in zebrafish embryos[J]. Molecules, 2017, 22(4): 660.
    [40] LI J, ZHANG Y, LIU K, et al. Xiaoaiping induces developmental toxicity in zebrafish embryos through activation of ER stress, apoptosis and the wnt pathway[J]. Front Pharmacol, 2018, 9: 1250.
  • 加载中
计量
  • 文章访问数:  397
  • HTML全文浏览量:  8
  • PDF下载量:  283
  • 被引次数: 0
出版历程
  • 刊出日期:  2020-09-10

目录

    /

    返回文章
    返回