留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄芪甲苷调控Akt信号通路阻抑人腹膜间皮细胞间充质转化的实验研究

俞曼殊 史俊 赵君谊 朱羿霖 盛梅笑

俞曼殊, 史俊, 赵君谊, 朱羿霖, 盛梅笑. 黄芪甲苷调控Akt信号通路阻抑人腹膜间皮细胞间充质转化的实验研究[J]. 南京中医药大学学报, 2019, 35(1): 53-57.
引用本文: 俞曼殊, 史俊, 赵君谊, 朱羿霖, 盛梅笑. 黄芪甲苷调控Akt信号通路阻抑人腹膜间皮细胞间充质转化的实验研究[J]. 南京中医药大学学报, 2019, 35(1): 53-57.
YU Man-shu, SHI Jun, ZHAO Jun-yi, ZHU Yi-lin, SHENG Mei-xiao. The Inhibitory Effect of Astragaloside Ⅳ on Epithelial Mesenchymal Transition of Human Peritoneal Mesothelial Cells by Regulating Akt Signaling[J]. Journal of Nanjing University of traditional Chinese Medicine, 2019, 35(1): 53-57.
Citation: YU Man-shu, SHI Jun, ZHAO Jun-yi, ZHU Yi-lin, SHENG Mei-xiao. The Inhibitory Effect of Astragaloside Ⅳ on Epithelial Mesenchymal Transition of Human Peritoneal Mesothelial Cells by Regulating Akt Signaling[J]. Journal of Nanjing University of traditional Chinese Medicine, 2019, 35(1): 53-57.

黄芪甲苷调控Akt信号通路阻抑人腹膜间皮细胞间充质转化的实验研究

The Inhibitory Effect of Astragaloside Ⅳ on Epithelial Mesenchymal Transition of Human Peritoneal Mesothelial Cells by Regulating Akt Signaling

  • 摘要: 目的 观察黄芪甲苷(AS-Ⅳ)对TGF-β1诱导人腹膜间皮细胞HMrSV5 EMT及β-catenin的影响,探讨Akt信号通路的作用及AS-Ⅳ干预机制。方法 采用TGF-β1诱导建立HMrSV5 EMT模型,Western blot检测不同浓度TGF-β1对EMT标记蛋白、β-catenin及Akt信号蛋白的影响;予不同浓度AS-Ⅳ干预HMrSV5 EMT模型,Real-time PCR检测EMT相关基因及β-catenin mRNA水平,Western blot检测Akt信号蛋白表达;与Akt通路抑制剂MK2206、雷帕霉素及激动剂Insulin作对照,观察AS-Ⅳ干预HMrSV5 EMT指标及β-catenin蛋白的变化。结果 ①TGF-β1诱导HMrSV5细胞发生EMT、上调β-catenin水平,激活Akt信号通路;②AS-Ⅳ能不同程度改善TGF-β1诱导的HMrSV5 EMT、降解β-catenin,并在一定程度上抑制Akt信号通路活化;③Akt通路参与调控HMrSV5 EMT及β-catenin,其抑制剂MK2206、雷帕霉素的调控作用与AS-Ⅳ类似;④Akt通路激动剂Insulin明显减弱AS-Ⅳ对EMT及β-catenin的抑制效果。结论 TGF-β1可诱导HMrSV5 EMT,上调β-catenin,AS-Ⅳ可能通过抑制Akt信号通路活化,阻抑HMrSV5 EMT,降解β-catenin。

     

  • [1] MEHROTRA R, DEVUYST O, DAVIES SJ, et al. The current state of peritoneal dialysis[J]. J Am Soc Nephrol, 2016, 27: 3238-3252.
    [2] YAEZ-MO M, LARA-PEZZI E, SELGAS R, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells[J]. N Engl J Med, 2003, 348(5): 403-413.
    [3] 史俊, 俞曼殊, 盛梅笑,等. 黄芪甲苷抑制高糖腹透液诱导HMrSV5氧化应激与EMT的实验研究[J]. 南京中医药大学学报, 2016, 32(4): 337-341.
    [4] YOSHIZAWA H, MORISHITA Y, WATANABE M, et al. TGF-β 1-siRNA delivery with nanoparticles inhibits peritoneal fibrosis[J]. Gene Ther, 2015, 22(4): 333.
    [5] HUANG TS, LI L, MOALIM‐NOUR L, et al. A regulatory network involving β‐Catenin, E-cadherin, PI3k/Akt, and Slug balances self‐renewal and differentiation of human pluripotent stem cells in response to wnt signaling[J]. Stem Cell, 2015, 33(5): 1419-1433.
    [6] ZHOU D, TAN RJ, FU H, et al. Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword[J]. Lab Invest, 2016, 96(2): 156-167.
    [7] BAO Z, XU X, LIU Y, et al. CBX7 negatively regulates migration and invasion in glioma via Wnt/β-catenin pathway inactivation[J]. Oncotarget, 2017, 8(24): 39048-39063.
    [8] GUO Y, GUPTE M, UMBARKAR P, et al. Entanglement of GSK-3β, β-catenin and TGF-β1 signaling network to regulate myocardial fibrosis[J]. J Mol Cell Cardiol, 2017, 110: 109.
    [9] LIEN EC, LYSSIOTIS CA, CANTLEY LC. Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer[J]. Metab Cancer, 2016:39-72.
    [10] MATSUMOTO T, YOKOI A, HASHIMURA M, et al. TGF-β-mediated LEFTY/Akt/GSK-3β/Snail axis modulates epithelial-mesenchymal transition and cancer stem cell properties in ovarian clear cell carcinomas[J]. Mol Carcinogen, 2018, 57(8):957-967.
    [11] YU D, LEI JQ, GUO SL, et al. The CNPY2 enhances epithelial-mesenchymal transition via activating the AKT/GSK3β pathway in non-small cell lung cancer[J]. Cell Biol Int, 2018, 42(8):959-964.
    [12] BACHELDER RE, YOON SO, FRANCI C, et al. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial mesenchymal transition[J]. J Cell Biol, 2005, 168(1): 29-33.
    [13] WANG H, ZHANG G, ZHANG H, et al. Acquisition of epithelial–mesenchymal transition phenotype and cancer stem cell-like properties in cisplatin-resistant lung cancer cells through AKT/β-catenin/Snail signaling pathway[J]. Eur J Pharmacol, 2014, 723: 156-166.
    [14] WU K, FAN J, ZHANG L, et al. PI3K/Akt to GSK3β/β-catenin signaling cascade coordinates cell colonization for bladder cancer bone metastasis through regulating ZEB1 transcription[J]. Cell Signal, 2012, 24(12): 2273-2282.
    [15] WALKER NM, BELLOLI EA, STUCKEY L, et al. Mechanistic target of rapamycin complex 1 (mTORC1) and mTORC2 as key signaling intermediates in mesenchymal cell activation[J]. J Biol Chem, 2016, 291(12): 6262-6271.
    [16] LAMOUILLE S, CONNOLLY E, SMYTH JW, et al. TGF-β-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion[J]. J Cell Sci, 2012, 125(5): 1259-1273.
    [17] HAN Q, LIN L, ZHAO B, et al. Inhibition of mTOR ameliorates bleomycin-induced pulmonary fibrosis by regulating epithelial-mesenchymal transition[J]. Biochem Bioph Res Comm, 2018, 500(4): 839-845.
  • 加载中
计量
  • 文章访问数:  772
  • HTML全文浏览量:  4
  • PDF下载量:  766
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-01-10

目录

    /

    返回文章
    返回