留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GC-MS技术的脑缺血再灌注损伤大鼠脑组织与血清代谢谱研究

张春兵 李鹏飞 朱小飞 高峰

张春兵, 李鹏飞, 朱小飞, 高峰. 基于GC-MS技术的脑缺血再灌注损伤大鼠脑组织与血清代谢谱研究[J]. 南京中医药大学学报, 2018, 34(6): 611-616.
引用本文: 张春兵, 李鹏飞, 朱小飞, 高峰. 基于GC-MS技术的脑缺血再灌注损伤大鼠脑组织与血清代谢谱研究[J]. 南京中医药大学学报, 2018, 34(6): 611-616.
ZHANG Chun-bing, LI Peng-fei, ZHU Xiao-fei, GAO Feng. GC-MS-Based Technique Identifies Metabolite Profile of Brain Tissues and Serum from Brain Ischemia/Reperfusion Injury Rats[J]. Journal of Nanjing University of traditional Chinese Medicine, 2018, 34(6): 611-616.
Citation: ZHANG Chun-bing, LI Peng-fei, ZHU Xiao-fei, GAO Feng. GC-MS-Based Technique Identifies Metabolite Profile of Brain Tissues and Serum from Brain Ischemia/Reperfusion Injury Rats[J]. Journal of Nanjing University of traditional Chinese Medicine, 2018, 34(6): 611-616.

基于GC-MS技术的脑缺血再灌注损伤大鼠脑组织与血清代谢谱研究

GC-MS-Based Technique Identifies Metabolite Profile of Brain Tissues and Serum from Brain Ischemia/Reperfusion Injury Rats

  • 摘要: 目的 探讨脑缺血再灌注损伤大鼠脑组织和血清中差异表达的代谢物。方法 采用Zea Longa改良栓线法构建大鼠脑中动脉栓塞(MCAO)模型,收集脑组织和血清,采用气相色谱-质谱(GC-MS)方法检测代谢物表达谱。利用OmicShare工具对代谢物进行聚类分析。运用主成分分析法(PCA)、最小二乘法-判别分析法(PLS-DA)结合t检验筛选得到差异表达的代谢物。进一步利用Metabo Analyst数据库对差异表达的代谢物进行通路分析。结果 总共鉴定出105个血清代谢物以及95个脑组织代谢物。PLS-DA分析表明,假手术组和MCAO模型组血清和脑组织区分较好。假手术组相比,MCAO大鼠血清中尿素、缬氨酸、亮氨酸、异亮氨酸、甘露糖、尿素、苯丙氨酸以及蛋氨酸代谢物显著升高(P<0.05),与脯氨酸、丙氨酸、谷氨酸、肌醇、丝氨酸、丙三醇、亚油酸以及4-羟基脯氨酸显著降低(P<0.05)。MCAO模型大鼠脑组织丙氨酸、乳酸、尿素、亮氨酸、脯氨酸、缬氨酸、2-羟基异丁酸、异亮氨酸显著升高(P<0.05)。代谢通路分析结果表明,这些差异代谢物可参与部分氨基酸合成及代谢通路、亚油酸代谢通路、甲烷代谢通路、甘油酯类代谢通路及氨酰-tRNA生物合成等。结论 脑缺血再灌注损伤脑组织与血清中存在差异表达的代谢物,可能参与脑卒中发病机制,为研发脑卒中的早期诊断标志物提供依据。

     

  • [1] ADAMSKI MG, LI Y, WAGNER E, et al. Expression profile based gene clusters for ischemic stroke detection [J]. Genomics, 2014, 104(3):163-169.
    [2] LI P, TENG F, GAO F, et al. Identification of circulating microRNAs as potential biomarkers for detecting acute ischemic stroke [J]. Cell Mol Neurobiol, 2015, 35(3):433-447.
    [3] MISRA S, KUMAR A, KUMAR P, et al. Blood-based protein biomarkers for stroke differentiation: A systematic review [J]. Proteomics Clin Applicat, 2017,11(9/10):1700007.
    [4] GRAHAM SF, REY NL, YILMAZ A, et al. Biochemical profiling of the brain and blood metabolome in a mouse model of prodromal Parkinson's disease reveal distinct metabolic profiles [J]. J Proteome Res, 2018, 17(7):2460-2469.
    [5] QURESHI MI, VORKAS PA, COUPLAND AP, et al. Lessons from metabonomics on the neurobiology of stroke [J]. Neuroscientist, 2016, 23(4):374-382.
    [6] WANG D, KONG J, WU J, et al. GC-MS-based metabolomics identifies an amino acid signature of acute ischemic stroke [J]. Neurosci Lett, 2017, 642:7-13.
    [7] WANG Y, WANG YG, MA TF, et al. Dynamic metabolites profile of cerebral ischemia/reperfusion revealed by 1H NMR-based metabolomics contributes to potential biomarkers [J]. Int J Clin Exp Pathol, 2014,7(7): 4067-4075.
    [8] WANG Y, WANG Y, LI M, et al. 1H NMR-based metabolomics exploring biomarkers in rat cerebrospinal fluid after cerebral ischemia/reperfusion[J]. Mol Biosyst, 2013, 9 (3):431-439.
    [9] LI P, SHEN M, GAO F, et al. An antagomir to microRNA-106b-5p ameliorates cerebral ischemia and reperfusion injury in rats via inhibiting apoptosis and oxidative stress [J]. Mol Neurobiol, 2017, 54(4):2901-2921.
    [10] 孙润彬, 俞晓忆, 毛勇,等. 昆布-甘草合用对SD 大鼠基础代谢干扰的代谢组学研究 [J]. 药学学报, 2015, 50 (3): 312-318.
    [11] CLOONAN L, FITZPATRICK KM, KANAKIS AS, et al. Metabolic determinants of white matter hyperintensity burden in patients with ischemic stroke [J]. Atherosclerosis, 2015, 240(1):149-153.
    [12] LIU P, LI R, ANTONOV AA, et al. Discovery of metabolite biomarkers for acute ischemic stroke progression [J]. J Proteome Res, 2017, 16(2):773-779.
    [13] ORMSTAD H, VERKERK R, SANDVIK L, et al. Serum phenylalanine, tyrosine, and their ratio in acute ischemic stroke: on the trail of a biomarker?[J]. J Mol Neurosci, 2016, 58(1):102-108.
    [14] HUANG Q, LI C, XIA N, et al. Neurochemical changes in unilateral cerebral hemisphere during the subacute stage of focal cerebral ischemia-reperfusion in rats: An ex vivo 1H magnetic resonance spectroscopy study [J]. Brain Res, 2018, 1684:67-74.
    [15] RUIZ-CANELA M, TOLEDO E, CLISH CB, et al. Plasma branched-chain amino acids and incident cardiovascular disease in the predimed trial [J]. Clin Chem, 2016, 62(4):582-592.
    [16] KIMBERLY WT, WANG Y, PHAM L, et al. Metabolite profiling identifies a branched chain amino acid signature in acute cardioembolic stroke [J]. Stroke, 2013, 44 (5), 1389-1395.
    [17] RUAN L, WANG Y, CHEN SC, et al. Metabolite changes in the ipsilateral and contralateral cerebral hemispheres in rats with middle cerebral artery occlusion [J]. Neur Regen Res, 2017, 12(6):931-937.
    [18] CAMBRAY S, PORTERO-OTIN M, JOVE M, et al. Metabolomic estimation of the diagnosis and onset time of permanent and transient cerebral ischemia [J]. Mol Neurobiol, 2018, 55(7):6193-6200.
    [19] ZHU Y, GUO Z, ZHANG L, et al. System-wide assembly of pathways and modules hierarchically reveal metabolic mechanism of cerebral ischemia [J]. Sci Rep, 2015, 5:17068.
    [20] IRIE M, FUJIMURA Y, YAMATO M, et al. Integrated MALDI-MS imaging and LC-MS techniques for visualizing spatiotemporal metabolomic dynamics in a rat stroke model [J]. Metabolomics, 2014, 10(3):473-483.
  • 加载中
计量
  • 文章访问数:  836
  • HTML全文浏览量:  11
  • PDF下载量:  706
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-11-10

目录

    /

    返回文章
    返回