留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苍艾挥发油对大鼠抑郁样行为的影响及机制研究

王维 王玉莲 张凯玲 解宇环 陈柏君 熊磊

王维, 王玉莲, 张凯玲, 解宇环, 陈柏君, 熊磊. 苍艾挥发油对大鼠抑郁样行为的影响及机制研究[J]. 南京中医药大学学报, 2019, 35(4): 421-425.
引用本文: 王维, 王玉莲, 张凯玲, 解宇环, 陈柏君, 熊磊. 苍艾挥发油对大鼠抑郁样行为的影响及机制研究[J]. 南京中医药大学学报, 2019, 35(4): 421-425.
WANG Wei, WANG Yu-lian, ZHANG Kai-ling, XIE Yu-huan, CHEN Bo-jun, XIONG Lei. The Study on the Anti-Depression Effect and Mechanism of Volatile Oil of Cang Ai[J]. Journal of Nanjing University of traditional Chinese Medicine, 2019, 35(4): 421-425.
Citation: WANG Wei, WANG Yu-lian, ZHANG Kai-ling, XIE Yu-huan, CHEN Bo-jun, XIONG Lei. The Study on the Anti-Depression Effect and Mechanism of Volatile Oil of Cang Ai[J]. Journal of Nanjing University of traditional Chinese Medicine, 2019, 35(4): 421-425.

苍艾挥发油对大鼠抑郁样行为的影响及机制研究

The Study on the Anti-Depression Effect and Mechanism of Volatile Oil of Cang Ai

  • 摘要: 目的 研究苍艾挥发油(Volatile oil of Cang Ai,VOCA)对不可预知慢性温和应激所致的大鼠抑郁样行为的影响及其可能的作用机制。方法 将40只SD大鼠,随机分为4组,正常对照组、模型对照组、阳性药组(氯米帕明,20 mg/kg)和苍艾挥发油组(14.6 μL/kg)各10只;后3组大鼠均采用6种不同刺激方式复制慢性不可预知温和应激模型(CUMS)。在CUMS造模第15~42天进行药物干预,除阳性药灌胃给药外,其他各组均雾化吸入相应剂量的药物或溶媒。于造模后第21、28、35、42天进行体质量、食量和毛态检测,造模结束后的第1天进行旷场实验和蔗糖偏好实验,以评价苍艾挥发油对应激所导致的抑郁样行为的作用。用免疫荧光染色检测大鼠海马齿状回BDNF阳性细胞数、蛋白免疫印迹法检测大鼠海马中突触囊泡蛋白(Synaptophysin)和突触后致密物质-95(PSD-95)的蛋白表达水平。结果 与模型组比较,VOCA可明显增加模型大鼠的水平运动总路程、穿行格子数和移动速度,同时缩短静止时间(P<0.01),提高蔗糖偏好度(P<0.05)。VOCA在给药第7、14、21和28天可显著增加造模动物体质量增幅和进食量(P<0.05~0.01),毛态评分则明显低于模型组(P<0.01)。同时,VOCA能够明显增加海马齿状回中BDNF阳性细胞数和海马组织中Synaptophysin表达量(P<0.01)。结论 苍艾挥发油对抗大鼠慢性不可预见应激抑郁的机制可能与增加BDNF含量进而增加突触囊泡膜蛋白表达从而改善突触传递效能有关。

     

  • [1] JANNE G, ROBERT M, FISKE E, et al. Effects of chronic mild stress on sexual behavior, locomotor activity and consumption of sucrose and saccharine solutions[J]. Physiol Behav, 2005, 84(4): 571-577.
    [2] LI XL, YUAN YG, XU H, et al. Changed synaptic plasticity in neural circuits of depressive-like and escitalopram-treated rats[J]. Int J Neuropsychopharmacol, 2015,8(10): 1-12.
    [3] WANG Q, TIMBERLAKE MA, PRALL K, et al. The recent progress in animal models of depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2017, 77: 99-109.
    [4] CONGLI H, YING L, HONG W, et al. Re-Evaluation of the interrelationships among the behavioral tests in rats exposed to chronic unpredictable mild stress[J]. PLoS ONE, 2017, 12(9): 1-15.
    [5] WEI L, TONGTONG G, YASHU L, et al. The role of neural plasticity in depression: From hippocampus to prefrontal cortex[J]. Neural Plast, 2017, 2017:1-11.
    [6] SON H, BANASR M, CHOI M, et al. Neuritin produces antidepressant actions and blocks the neuronal and behavioral deficits caused by chronic stress[J].Proc Nat Acad Sci USA, 2012, 109(28): 11378-11383.
    [7] VON BOHLEN UND HALBACH O, VON BOHLEN UND HALBACH V. BDNF effects on dendritic spine morphology and hippocampal function[J]. Cell Tissue Res, 2018,373(3): 729-741.
    [8] MELO CV, MELE M, CURCIO M, et al. BDNF regulates the expression and distribution of vesicular glutamate transporters in cultured hippocampal neurons[J]. PLoS ONE, 2013,8(1): e53793.
    [9] AMTUL Z, ATTA-UR-RAHMAN. Neural plasticity and memory: Molecular mechanism[J]. Rev Neurosci, 2015, 26(3): 253-268.
    [10] DUMAN RS, AGHAJANIAN GK. Synaptic dysfunction in depression: Potential therapeutic targets[J]. Science, 2012, 338(6103): 68-72.
    [11] MCEWEN BS, EILAND L, HUNTER RG, et al. Stress and anxiety: Structural plasticity and epigenetic regulation as a consequence of stress[J]. Neuropharmacol, 2012, 62(1): 3-12.
    [12] ANJA B, ANNE D, INGEID P, et al. The synaptophysin-synaptobrevin complex: A hallmark of synaptic vesicle maturation[J]. J Neurosci, 1999, 19(6): 1922-1931.
    [13] GLANTZ LA, GILMORE JH, HAMER RM, et al. Synaptophysin and postsynaptic density protein 95 in the human prefrontal cortex from mid-gestation into early adulthood[J]. Neuroscience, 2007, 149(3): 582-591.
    [14] KWON SE, CHAPMAN ER. Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons[J]. Neuron, 2011, 70(5): 847-854.
    [15] AKIRA Y, MARTHA CP. Postsynaptic localization of PSD-95 is regulated by all three pathways downstream of TrkB signaling[J]. Front Synaptic Neurosci, 2014, 6(6): 1-6.
    [16] WON S, INCONTRO S, NICOLL RA, et al. PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61[J]. Proc Nat Acad Sci USA, 2016, 113(32): E4736-E4744.
    [17] CATTS VS, DERMINIO S, HAHN CG, et al. Postsynaptic density levels of the NMDA receptor NR1 subunit and PSD-95 protein in prefrontal cortex from people with schizophrenia[J]. NPJ Schizophrenia, 2015, 1(1): 15037.
  • 加载中
计量
  • 文章访问数:  762
  • HTML全文浏览量:  12
  • PDF下载量:  529
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-07-10

目录

    /

    返回文章
    返回