Effects of Zishen Xieqing Tang on Dopamine Signaling Pathway of Desensitization/Resensitization in Attention Deficit Hyperactivity Disorder Rats' Prefrontal Cortex
-
摘要:
目的 探讨中药方滋肾泻青汤对注意缺陷多动障碍模型大鼠(Spontaneously hypertensive rat, SHR)行为学表现及前额叶多巴胺受体脱敏-复敏信号通路的影响。 方法 50只SHR大鼠随机分为模型组、利他林组(2 mg·kg-1)、滋肾泻青汤低剂量组、中剂量组、高剂量组(6.0、12.1、24.1 g·kg-1), 每组10只, 另设Wistar京都大鼠(Wistar Kyoto rat, WKY)为正常对照组。每日灌胃2次, 在此期间进行相应的行为学检测, 治疗4周后取大鼠前额叶组织。分别用Western blot及qPCR检测各组大鼠前额叶组织中GRK-6、β-arrestin2、NCS-1、PP2A及PSD-95等蛋白和mRNA表达水平。 结果 利他林及滋肾泻青汤能改善SHR大鼠的行为学表现。与正常组相比, 模型组大鼠前额叶中β-arrestin2、NCS-1、PP2A、PSD-95蛋白和mRNA表达水平有下调趋势或显著下调(P < 0.05), 而GRK-6的表达水平上调(P < 0.05);经治疗后, 与模型组相比, 利他林组、滋肾泻青汤各剂量组前额叶中β-arrestin2、NCS-1、PSD-95、PP2A蛋白和mRNA表达水平有上调趋势或明显上调(P < 0.05), 而GRK-6的表达水平明显降低(P < 0.05)。 结论 利他林及滋肾泻青汤能增加模型大鼠前额叶多巴胺受体的活性, 多巴胺受体脱敏-复敏信号通路可能是滋肾泻青汤治疗ADHD的潜在途径之一。 Abstract:OBJECTIVE To investigate the effects of Zishen Xieqing Tang(ZXT)on attention deficit hyperactivity disorder (ADHD) related behavior and dopamine signaling pathway of desensitization and resensitization in spontaneously hypertensive rats' prefrontal cortex. METHODS 10 Wistar Kyoto rats were set as normal control group. 50 SHR rats were randomly divided into 5 groups including model group, methylphenidate (MPH) group (2 mg·kg-1by gavage), and high, middle, low dose of ZXT groups(ig ZXT with the crude drug dosage 6.0, 12.1, 24.1 g·kg-1 respectively). Rats were orally given the drugs twice a day, then, behavior experiment was done to test the ADHD related behavior changes. After 4 weeks of treatment, the prefrontal cortex of rats were collected for further study. Real-time PCR and Western blot were used to test the protein or mRNA expression of GRK-6, β-arrestin2, NCS-1, PP2A and PSD-95 in SHR rats' prefrontal cortex. RESULTS MPH group and ZXT groups could improve the ADHD related behavioral performance of SHR. Statistic difference of β-arrestin2, GRK-6, NCS-1, PSD-95, PP2A and PKA expression were observed among different groups (P < 0.05). Comparing with normal control group, the β-arrestin2, NCS-1, PSD-95 and PP2A expression of SHR rats' prefrontal cortex in model group were much lower (P < 0.05). After treatment with ZXT, comparing the model group, the expression of β-arrestin2, NCS-1, PSD-95 and PP2A in MPH group and every-dosage group of ZXT were much higher in both parts (P < 0.05). At the meanwhile, the expression of GRK-6 was observed on the contrary behavior. CONCLUSION Both MPH and Zishen Xieqing Tang can affect the function of dopamine receptors by regulating desensitization and re-sensitization, thus improve the ADHD related symptom. -
图 1 滋肾泻青汤方对各组大鼠前额叶多巴胺受体信号通路中β-arrestin2、PSD-95、NCS-1、GRK-6、PP2A蛋白表达的影响
注: WKY+DDW.正常对照组; SHR+DDW.模型组; SHR+MPH. 利他林组; SHR+ZXT-L、M、H.滋肾泻青汤低、中、高剂量组。与WKY+DDW组比较, *P < 0.05;与SHR+DDW组比较, #P < 0.05。x±s, n=6。
Figure 1. The regulatory effects of Zishen Xieqing Tang on dopamine receptor signaling pathway related proteinβ-arrestin2, PSD-95, NCS-1, GRK-6, PP2A in rats' prefrontal cortex
图 2 滋肾泻青汤方对各组大鼠前额叶多巴胺受体信号通路中β-arrestin2、PSD-95、NCS-1、GRK-6、PP2A mRNA表达的影响
注: WKY+DDW.正常对照组; SHR+DDW.模型组; SHR+MPH.利他林组; SHR+ZXT-L、M、H.滋肾泻青汤低、中、高剂量组。与正常组比较, *P < 0.05;与模型组比较, #P < 0.05。x±s=6。
Figure 2. The regulatory effects of Zishen Xieqing Tang on dopamine receptor signaling pathway related mRNA expression in rats' prefrontal cortex
表 1 引物序列
Table 1. Primer sequences
基因 引物序列(5'→3') 产物长度/bp GAPDH Forward: GACATGCCGCCTGGAGAAAC 92 Reverse: AGCCCAGGATGCCCTTTAGT GRK-6 Forward: CAGTCCAGATGAGCAAGCAG 103 Reverse: CACAACAGACAGGCACGAGT β-arrestin2 Forward: AGGGCAGTGGGATACAGGT 108 Reverse: AGGGCAAACAAAGCAAACAG NCS-1 Forward: GCTGTGATGTGTGGGAACC 101 Reverse: GCTTTGTGGAGACGAGGAAG PSD-95 Forward: CACTGACAACCCGCACATC 136 Reverse: CTCCCGAACATCCACTTCAT PP2A Forward: TTACCGAGAGCGTATCACCA 171 Reverse: ATCTGCCCATCCACCAAG 表 2 滋肾泻青汤对SHR大鼠开场实验活动距离的影响(x±s, m, n=10)
Table 2. The effects of Zishen Xieqing Tang on the SHR rats' moving distances in open field test (x±s, m, n=10)
组别 给药前 给药2周 给药4周 正常组 11.14±1.83 13.21±2.02 11.96±1.68 模型组 31.11±3.31** 33.81±2.63** 33.14±3.57** 利他林组 30.68±3.11** 28.32±3.49**# 23.09±2.63**## 滋肾泻青汤低剂量组 29.59±3.73** 27.64±2.51**# 24.48±1.73**## 滋肾泻青汤中剂量组 33.58±1.89** 24.37±1.58**## 25.63±1.73**## 滋肾泻青汤高剂量组 31.74±3.26** 26.93±2.30**## 24.38±2.15**## 注: 与正常组比较, * *P < 0.01;与模型组比较, #P < 0.05, ##P < 0.01。 表 3 滋肾泻青汤对SHR大鼠水迷宫隐蔽站台实验潜伏期的影响(x±s, s, n=10)
Table 3. The effects of Zishen Xieqing Tang on the SHR rats' escape latency in Morris water maze test(x±s, s, n=10)
组别 第1天 第2天 第3天 第4天 第5天 正常组 81.22±7.51 83.72±7.25 79.56±9.32 81.24±6.96 83.65±8.14 模型组 70.33±6.57** 66.35±8.24** 55.32±4.97** 46.84±3.75** 32.05±5.63** 利他林组 71.24±7.25** 62.35±4.56** 50.36±5.83** 39.52±4.35**# 20.31±3.52**## 滋肾泻青汤低剂量组 73.64±6.35** 67.56±7.52** 51.36±6.21** 33.65±5.46**## 25.52±3.24**## 滋肾泻青汤中剂量组 69.65±6.53** 60.67±5.54**# 53.25±3.54** 41.36±4.13** 23.25±4.68**## 滋肾泻青汤高剂量组 72.34±8.63** 62.36±5.63** 49.36±4.25**# 36.65±5.72**## 21.35±4.61**## 注: 与正常组比较, * *P < 0.01;与模型组比较, #P < 0.05, ##P < 0.01。 -
[1] POLANCZYK GV, WILLCUTT EG, SALUM GA, et al. ADHD prevalence estimates across three decades: An updated systematic review and meta-regression analysis[J]. Int J Epidemiol, 2014, 43(2): 434-442. doi: 10.1093/ije/dyt261 [2] SWANSON JM, KINSBOURNE M, NIGG J, et al. Etiologic subtypes of attention-deficit/hyperactivity disorder: Brain imaging, molecular genetic and environmental factors and the dopamine hypothesis[J]. Neuropsychol Rev, 2007, 17(1): 39-59. doi: 10.1007/s11065-007-9019-9 [3] 孙继超, 张碧霞, 朱万青, 等. 滋肾泻青汤联合盐酸托莫西汀治疗儿童注意缺陷多动障碍疗效观察[J]. 广西中医药大学学报, 2021, 24(4): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GSZB202104004.htmSUN JC, ZHANG BX, ZHU WQ, et al. Clinical observation on treatment of attention deficit hyperactivity disorder by zishen Xieqing Decoction in combination with atomoxetine hydrochloride[J]. J Guangxi Univ Chin Med, 2021, 24(4): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GSZB202104004.htm [4] REAGAN-SHAW S, NIHAL M, AHMAD N. Dose translation from animal to human studies revisited[J]. FASEB J, 2008, 22(3): 659-661. doi: 10.1096/fj.07-9574LSF [5] 袁海霞, 倪新强, 吴正治, 等. 基于"肾脑相关"探讨熟地黄对ADHD模型大鼠行为学的影响[J]. 中药材, 2018, 41(8): 1970-1974. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYCA201808042.htmYUAN HX, NI XQ, WU ZZ, et al. Impact of Rehmannia glutinosa on behavior of attention deficit hyperactivity disorder(ADHD) model rats based on the correlation of kidney and brain[J]. J Chin Med Mater, 2018, 41(8): 1970-1974. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYCA201808042.htm [6] 孙继超, 尤月, 周荣易, 等. 安神定志灵对ADHD模型大鼠前额叶、纹状体CDK5/DARPP32/PP1信号通路的影响[J]. 中国实验方剂学杂志, 2016, 22(17): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201617018.htmSUN JC, YOU Y, ZHOU RY, et al. Effects of Anshen dingzhiling compound on signaling pathway of CDK5/DARPP32/PP1 in ADHD rats' Striatum and prefrontal cortex[J]. Chin J Exp Tradit Med Formulae, 2016, 22(17): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201617018.htm [7] PEREIRA-SANCHEZ V, CASTELLANOS FX. Neuroimaging in attention-deficit/hyperactivity disorder[J]. Curr Opin Psychiatry, 2021, 34(2): 105-111. doi: 10.1097/YCO.0000000000000669 [8] KLEIN MO, BATTAGELLO DS, CARDOSO AR, et al. Dopamine: Functions, signaling, and association with neurological diseases[J]. Cell Mol Neurobiol, 2019, 39(1): 31-59. doi: 10.1007/s10571-018-0632-3 [9] VOGT BA. Cingulate impairments in ADHD: Comorbidities, connections, and treatment[J]. Handb Clin Neurol, 2019, 166: 297-314. [10] BEAULIEU JM, GAINETDINOV RR. The physiology, signaling, and pharmacology of dopamine receptors[J]. Pharmacol Rev, 2011, 63(1): 182-217. doi: 10.1124/pr.110.002642 [11] PETRILLO MG, OAKLEY RH, CIDLOWSKI JA. β-Arrestin-1 inhibits glucocorticoid receptor turnover and alters glucocorticoid signaling[J]. J Biol Chem, 2019, 294(29): 11225-11239. doi: 10.1074/jbc.RA118.007150 [12] MA TL, ZHOU Y, ZHANG CY, et al. The role and mechanism of β-arrestin2 in signal transduction[J]. Life Sci, 2021, 275: 119364. doi: 10.1016/j.lfs.2021.119364 [13] WANG N, SU P, ZHANG Y, et al. Protein kinase D1-dependent phosphorylation of dopamine D1 receptor regulates cocaine-induced behavioral responses[J]. Neuropsychopharmacology, 2014, 39(5): 1290-1301. doi: 10.1038/npp.2013.341 [14] LIU C, KE P, ZHANG JJ, et al. Protein kinase inhibitor peptide as a tool to specifically inhibit protein kinase A[J]. Front Physiol, 2020, 11: 574030. [15] PANDALANENI S, KARUPPIAH V, SALEEM M, et al. Neuronal calcium sensor-1 binds the D2 dopamine receptor and G-protein-coupled receptor kinase 1 (GRK1) peptides using different modes of interactions[J]. J Biol Chem, 2015, 290(30): 18744-18756. [16] GUPTA MK, MOHAN ML, NAGA PRASAD SV. G protein-coupled receptor resensitization paradigms[J]. Int Rev Cell Mol Biol, 2018, 339: 63-91. [17] BURNS JA, KROLL DS, FELDMAN DE, et al. Molecular imaging of opioid and dopamine systems: Insights into the pharmacogenetics of opioid use disorders[J]. Front Psychiatry, 2019, 10: 626. [18] CLIFTON NE, TRENT S, THOMAS KL, et al. Regulation and function of activity-dependent Homer in synaptic plasticity[J]. Mol Neuropsychiatry, 2019, 5(3): 147-161. -