留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effectiveness of Traditional Chinese Medicine in Reducing the Positive Rate of COVID-19 Close Contacts: A Large Population Cohort Study

WANG Xiao-xiao DOU Li ZOU Chong WU Yong-jun WANG Wei ZHAO Jing-jing YU Qian SHEN Zhao-feng NI Ping-min ZHANG Wen LU Ya-wen XI Zhao-qing FANG Zhu-yuan

王晓骁, 窦莉, 邹冲, 吴拥军, 王威, 赵晶晶, 于茜, 沈照峰, 倪平敏, 章雯, 陆亚文, 奚肇庆, 方祝元. 中医药影响新型冠状病毒肺炎密接者转阳率的研究:一项大样本队列研究[J]. 南京中医药大学学报, 2022, 38(12): 1086-1093. doi: 10.14148/j.issn.1672-0482.2022.1086
引用本文: 王晓骁, 窦莉, 邹冲, 吴拥军, 王威, 赵晶晶, 于茜, 沈照峰, 倪平敏, 章雯, 陆亚文, 奚肇庆, 方祝元. 中医药影响新型冠状病毒肺炎密接者转阳率的研究:一项大样本队列研究[J]. 南京中医药大学学报, 2022, 38(12): 1086-1093. doi: 10.14148/j.issn.1672-0482.2022.1086
WANG Xiao-xiao, DOU Li, ZOU Chong, WU Yong-jun, WANG Wei, ZHAO Jing-jing, YU Qian, SHEN Zhao-feng, NI Ping-min, ZHANG Wen, LU Ya-wen, XI Zhao-qing, FANG Zhu-yuan. Effectiveness of Traditional Chinese Medicine in Reducing the Positive Rate of COVID-19 Close Contacts: A Large Population Cohort Study[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(12): 1086-1093. doi: 10.14148/j.issn.1672-0482.2022.1086
Citation: WANG Xiao-xiao, DOU Li, ZOU Chong, WU Yong-jun, WANG Wei, ZHAO Jing-jing, YU Qian, SHEN Zhao-feng, NI Ping-min, ZHANG Wen, LU Ya-wen, XI Zhao-qing, FANG Zhu-yuan. Effectiveness of Traditional Chinese Medicine in Reducing the Positive Rate of COVID-19 Close Contacts: A Large Population Cohort Study[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(12): 1086-1093. doi: 10.14148/j.issn.1672-0482.2022.1086

Effectiveness of Traditional Chinese Medicine in Reducing the Positive Rate of COVID-19 Close Contacts: A Large Population Cohort Study

doi: 10.14148/j.issn.1672-0482.2022.1086
More Information
    Corresponding author: 奚肇庆,男,主任中医师,主要从事中医危急重症研究,E-mail:xzq49@163.com方祝元,男,教授,主任中医师,博士生导师,主要从事心系疾病研究,E-mail:13951617800@139.com
  • 摘要:   目的  观察中医药对新型冠状病毒肺炎(COVID-19)密切接触者的核酸检测转阳率的影响,为中医药预防新型冠状病毒肺炎的应用提供依据。  方法  将扬州隔离点中使用和未使用中药(清肺排毒汤、扶正益清方)的COVID-19密接者纳入本研究,通过倾向性评分匹配和logistic回归分析对核酸扩增试验(NAATs)的阳性率、核酸阳性者的病毒载量、阳性者的病情等级进行分析,以评估中医药预防新型冠状病毒肺炎的作用。  结果  共收集了30 000余例观察对象,基于数据筛选、核对,以1 286例密接者作为研究对象,包括中医组1 016例(79.00%)和对照组270例(21.00%),共有转阳患者55例。在倾向性评分匹配分析前后,结果均显示在男性和大于60岁的老年人群中,中药组的转阳率低于对照组,差异具有统计学意义(P<0.05)。多因素logistic回归(不纳入N值和O值)结果显示中药组转阳的风险与对照组相比降低了0.547倍。另外,密接者转阳后,中药组的总体和女性的病毒CT值高于对照组,差异具有统计学意义(P<0.05)。  结论  中医药有利于降低COVID-19密接者的转阳率和病毒载量。

     

  • Figure  1.  Result pattern of propensity score matching

    Figure  2.  Forest plot of multivariable logistic regression

    Figure  3.  Comparison of N value between TCM and control groups

    Note: *P < 0.05.

    Figure  4.  Comparison of O value between TCM and control groups

    Note: *P < 0.05.

    Table  1.   Comparison of characteristics between TCM group and control group

    Characteristics Control Group TCM Group W/χ2/t P value
    Age, Median (IQR) 35.0 (25.0, 50.0) 41.0 (30.0, 53.0) -5.278 < 0.001
    Gender, n (%)
    Male 135 (50.00) 471 (46.77) 0.889 0.346
    Female 135 (50.00) 536 (53.22)
    Underlying diseases, n (%)
    No 230 (85.19) 917 (90.26) 5.689 0.017
    Yes 40 (14.81) 99 (9.74)
    N value, x±s 24.91±7.47 23.00±7.67 3.295 0.001
    O value, x±s 27.31±6.79 25.73±7.07 3.001 0.003
    下载: 导出CSV

    Table  2.   The detail of underlying diseases of close contacts

    Underlying disease Frequency/n Percentage/%
    Hypertension 45 32.37
    Diabetes 14 10.07
    Chronic bronchitis 9 6.47
    Chronic nephrosis 7 5.04
    Other 85 61.15
    Note: Some close contacts have multiple underlying disease.
    下载: 导出CSV

    Table  3.   Comparison of positive rate between TCM and control group before matching

    Subgroups NAATs Result, n (%) χ2 P value
    Negative Positive
    All Control Group
    TCM Group
    251 (92.96)
    980 (96.46)
    19 (7.04)
    36 (3.54)
    5.535 0.019
    Male Control Group
    TCM Group
    126 (93.33)
    457 (97.03)
    9 (6.67)
    14 (2.97)
    3.922 0.048
    Female Control Group
    TCM Group
    125 (92.59)
    514 (95.90)
    10 (7.41)
    21 (4.10)
    2.590 0.108
    Age < 60 Control Group
    TCM Group
    234 (97.50)
    796 (96.72)
    6 (2.50)
    27 (3.28)
    0.376 0.540
    Age ≥60 Control Group
    TCM Group
    13 (52.00)
    135 (93.75)
    12 (48.00)
    9 (6.25)
    30.392 < 0.001
    下载: 导出CSV

    Table  4.   Comparison of positive rate between TCM and control groups after matching

    Subgroups NAATs Result, n (%) χ2 P value
    Negative Positive
    All Control Group
    TCM Group
    242 (93.44)
    254 (98.07)
    17 (6.56)
    5 (1.93)
    6.836 0.009
    Male Control Group
    TCM Group
    121 (94.53)
    134 (99.26)
    7 (5.47)
    1 (0.74)
    - 0.032*
    Female Control Group
    TCM Group
    121 (92.37)
    120 (96.77)
    10 (7.63)
    4 (3.23)
    2.385 0.123
    Age < 60 Control Group
    TCM Group
    229 (97.86)
    231 (97.88)
    5 (2.14)
    5 (2.12)
    < 0.001 >0.999
    Age ≥60 Control Group
    TCM Group
    13 (52.00)
    23 (100.00)
    12 (48.00)
    0 (0)
    - < 0.001*
    Note: *Fisher's exact test.
    下载: 导出CSV

    Table  5.   Multivariable logistic regression of TCM reducing positive rate

    Variable β Std.Error P OR 95%CI
    TCM vs Control -0.793 0.307 0.010 0.453 0.251-0.842
    Females vs Males 0.349 0.289 0.227 1.418 0.810-2.530
    Age 0.034 0.009 < 0.001 1.034 1.017-1.053
    Underlying diseases 0.232 0.383 0.545 1.260 0.571-2.589
    下载: 导出CSV

    Table  6.   Multi-variable logistic regression of TCM reducing positive rate after adjusting N and O value

    Variables β Std.Error P OR 95%CI
    TCM vs Control -0.069 0.416 0.868 0.933 0.131-2.251
    Females vs Males 0.109 0.336 0.745 1.116 0.578-2.184
    Age 0.007 0.010 0.508 1.007 0.986-1.028
    Underlying diseases 0.486 0.489 0.320 1.626 0.571-4.003
    N value 0.000 1 0.036 0.998 1.000 1 0.945-1.092
    O value -0.019 0.038 0.616 0.981 0.896-1.045
    下载: 导出CSV

    Table  7.   Comparison of N/O values between TCM and control groups

    Subgroup Control Group TCM Group t value P
    N value, x±s
    All 22.05±7.12 27.00±6.05 -2.252 0.017
    Males 24.46±6.76 27.36±7.04 -0.974 0.343
    Females 19.89±7.06 26.74±5.42 -2.663 0.018
    Age < 60 25.97±9.97 26.92±5.52 -0.223 0.831
    Age ≥60 19.92±4.91 27.24±7.80 -2.365 0.038
    O value, x±s
    All 24.99±5.55 28.42±6.01 -2.068 0.045
    Males 27.03±5.20 27.77±6.78 -0.289 0.776
    Females 23.16±5.44 28.86±5.57 -2.663 0.015
    Age < 60 27.48±7.34 28.54±5.97 -0.327 0.753
    Age ≥60 23.83±4.56 28.04±6.50 -1.587 0.139
    下载: 导出CSV

    Table  8.   Illness categories of positive cases between TCM and control groups

    Taking Chinese medicine Moderate illness Mild illness χ2 P
    No
    Yes
    15 (83.33)
    23 (69.70)
    3 (16.67)
    10 (30.30)
    0.535 0.464
    下载: 导出CSV

    Table  9.   Multi-variable logistic regression of the effect of TCM on illness severity

    Variables β Std.Error P OR 95%CI
    TCM vs Control 0.566 0.815 0.487 1.761 0.357-8.696
    Females vs Males 0.370 0.712 0.603 1.448 0.359-5.846
    Age -0.023 0.018 0.199 0.977 0.943-1.012
    Underlying diseases 0.306 1.038 0.768 1.358 0.177-10.394
    下载: 导出CSV
  • [1] MITJA O, CORBACHO-MONNE M, UBALS M, et al. A cluster-randomized trial of hydroxychloroquine for prevention of COVID-19[J]. N Engl J Med, 2021, 384(5): 417-427. doi: 10.1056/NEJMoa2021801
    [2] SIMONOVICH VA, BURGOS PRATX LD, SCIBONA P, et al. A randomized trial of convalescent plasma in COVID-19 severe pneumonia[J]. N Engl J Med, 2021, 384(7): 619-629. doi: 10.1056/NEJMoa2031304
    [3] BIAN LL, GAO QS, GAO F, et al. Impact of the Delta variant on vaccine efficacy and response strategies[J]. Expert Rev Vaccines, 2021, 20(10): 1201-1209. doi: 10.1080/14760584.2021.1976153
    [4] BOULWARE DR, PULLEN MF, BANGDIWALA AS, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for covid-19[J]. N Engl J Med, 2020, 383(6): 517-525. doi: 10.1056/NEJMoa2016638
    [5] ZHAO ZH, ZHOU Y, LI WH, et al. Analysis of traditional Chinese medicine diagnosis and treatment strategies for COVID-19 based on The diagnosis and treatment program for coronavirus disease-2019 from Chinese authority[J]. Am J Chin Med, 2020, 48(5): 1035-1049. doi: 10.1142/S0192415X20500500
    [6] WANG ZL, YANG LY. Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts[J]. J Ethnopharmacol, 2021, 270: 113869. doi: 10.1016/j.jep.2021.113869
    [7] AN XD, DUAN LY, ZHANG YH, et al. The three syndromes and six Chinese patent medicine study during the recovery phase of COVID-19[J]. Chin Med, 2021, 16(1): 44. doi: 10.1186/s13020-021-00454-x
    [8] ZHONG LLD, LAM WC, YANG W, et al. Potential targets for treatment of coronavirus disease 2019 (COVID-19): A review of Qing-Fei-Pai-du-Tang and its major herbs[J]. Am J Chin Med, 2020, 48(5): 1051-1071. doi: 10.1142/S0192415X20500512
    [9] HUANG YF, BAI C, HE F, et al. Review on the potential action mechanisms of Chinese medicines in treating Coronavirus Disease 2019 (COVID-19)[J]. Pharmacol Res, 2020, 158: 104939. doi: 10.1016/j.phrs.2020.104939
    [10] CHEN KX, YIN LW, LI ZP. Study on the prescription pattern of traditional Chinese medicine treatment for Corona Virus Disease 2019 in different provinces based on data mining[J]. J Liaoning Univ Tradit Chin Med, 2021, 23(5): 100-107.
    [11] PAN Y, ZHANG ML. Analysis on medication rule of COVID-19 pneumonia treated by TCM based on Data Mining[J]. TCM Res, 2021, 34(3): 48-53.
    [12] SHAO CC, WANG HJ, MENG PF, et al. TCM understanding and treatment status of COVID-19[J]. Acta Chin Med, 2020, 35(4): 704-708.
  • 加载中
图(4) / 表(9)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  35
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 发布日期:  2022-12-10

目录

    /

    返回文章
    返回