Evaluation of Antipyretic Activity and Potential Mechanism of Yak Horn on LPS-Induced Fever Rat Model
-
摘要:
目的 基于脂多糖(LPS)诱导发热大鼠模型评价牦牛角解热活性并探讨其作用机制, 以期为牦牛角新资源药材与开发利用提供科学依据。 方法 以大鼠肛温变化值及体温反应指数评价牦牛角解热活性; 采用ELISA试剂盒测定下丘脑中PGE2、cAMP的含量及血清中TNF-α与IL-1β的含量, 并结合超高压液相色谱飞行时间质谱法(UHPLC-Q-TOF-MS)检测发热大鼠血浆中内源性标志物, 探索牦牛角解热机制。 结果 牦牛角给药后1、2、3 h大鼠体温明显下降(P < 0.05), 低剂量组TNF-α及cAMP水平均显著降低(P < 0.01), 高剂量组cAMP水平显著降低(P < 0.01), 牦牛角给药组均能抑制IL-1β与PGE2水平。从空白组与模型组血浆样本中共鉴定出15个潜在差异代谢物, 牦牛角高剂量给药后可显著回调其中11个代谢物, 主要包括磷脂酰乙醇胺、鞘磷脂、腺嘌呤、琥珀酸、L-苏氨酸、4-羟脯氨酸、磷脂酰胆碱、溶血性磷脂酰乙醇胺等, 主要涉及甘油磷脂代谢通路。 结论 牦牛角解热活性确切, 其作用机制可能与抑制内源性致热源与中枢体温正性调节介质释放、调节脂质代谢密切相关。 Abstract:OBJECTIVE To evaluate the antipyretic activity of yak horn and explore its mechanism based on LPS-induced fever rat model, so as to provide scientific basis for new resources of yak horn medicinal materials. METHODS Based on LPS-induced fever rat model, the antipyretic activity of yak horn was evaluated by anal temperature change value and body temperature response index of rats. The levels of PGE2 and cAMP in hypothalamus and TNF-α and IL-1β in serum were determined by ELISA kits. Combined with the detection of endogenous markers in plasma of rats with fever by UHPLC-Q-TOF-MS, the antipyretic mechanism of yak horn was explored. RESULTS The body temperature of rats significantly decreased at the 1st, 2nd and 3rd hour after yak horn powder was delivered (P < 0.05), the levels of TNF-α and cAMP in the low dose yak horn group significantly decreased (P < 0.01), and the level of cAMP in the high dose yak horn group significantly decreased (P < 0.01). The expression of IL-1β and PGE2 was inhibited in the yak horn powder administration groups. 15 potential differential metabolites in plasma samples between blank group and model group were identified, while high dose yak horn significantly regulated 11 metabolites, including phosphatidyl ethanolamine, sphingomyelin, adenine, succinic acid, L-alanine, 4-hydroxyproline, phosphatidyl choline, hemolytic, phosphatidyl ethanolamine and so on, mainly involving glycerol phospholipid metabolism pathways. CONCLUSION Yak horn shows definitely antipyretic activity, and its mechanism may be related to the inhibition of endogenous heat source, the release of positive regulatory medium of central body temperature, and the regulation of lipid metabolism. -
Key words:
- yak horn /
- antipyretic /
- mechanism of action /
- non-targeted plasma metabolome
-
表 1 各组大鼠肛温变化(x±s,n=8)
Table 1. Changes of anal temperature in each group (x±s, n=8)
分组 剂量/ (g·kg-1) 基础体温/ ℃ 不同时间点体温值/℃ 造模后6 h 给药后1 h 给药后2 h 给药后3 h 给药后4 h 空白组 - 37.19±0.25 36.60±0.28 36.81±0.50 36.99±0.30 37.04±0.27 36.90±0.21 模型组 - 37.40±0.26 38.79±0.12### 38.84±0.21### 38.74±0.26### 38.68±0.28### 38.34±0.32### 阿司匹林组 0.08 37.43±0.22 38.64±0.23### 37.88±0.28*** 37.63±0.41*** 37.79±0.35*** 37.83±0.24** 羚羊角组 0.05 37.50±0.17 38.71±0.27### 38.54±0.28* 38.55±0.33 38.36±0.59* 38.14±0.52* 牦牛角低剂量组 0.625 37.50±0.38 38.79±0.25### 38.80±0.21 38.49±0.34* 38.44±0.52* 38.30±0.34 牦牛角高剂量组 1.25 37.37±0.30 38.55±0.32### 38.63±0.22* 38.45±0.30 38.46±0.30 38.14±0.40 注: 与空白组比较,###P < 0.001;与模型组比较,*P < 0.05, **P < 0.01, ***P < 0.001。 表 2 不同时间监测点下各组体温反应指数变化(x±s,n=8)
Table 2. Changes of temperature response index in each group at different time points (x±s, n=8)
分组 剂量/(g·kg-1) TRI6~7 h TRI6~8 h TRI6~9 h TRI6~10 h 模型组 - 2.83±0.44 5.50±1.05 8.01±1.59 10.23±2.14 阿司匹林组 0.08 1.65±0.23*** 2.30±0.86*** 2.85±1.58*** 3.60±2.11*** 羚羊角组 0.05 2.24±0.30** 4.32±0.60* 6.22±1.06* 7.72±1.94* 牦牛角低剂量组 0.625 2.60±0.54 4.89±1.09 6.83±1.61 8.57±1.33 牦牛角高剂量组 1.25 2.44±0.61* 4.78±1.25 6.96±2.06 8.83±1.01 注: 与模型组比较,*P < 0.05, **P < 0.01, ***P < 0.001。 表 3 潜在差异代谢物
Table 3. Potential differential metabolites
编号 tR/min 生物标记物 ESI m/z 分子式 含量变化 M vs CON MN1 vs M MN2 vs M 1 1.07 琥珀酸(Succinic acid) + 160.060 9 C4H6O4 ↑# ↓*** ↓*** 2 1.1 4-羟脯氨酸(4-Hydroxyproline) + 132.066 4 C5H9NO3 ↑# ↓*** ↓*** 3 1.11 腺嘌呤(Adenine) + 293.097 9 C5H5N5 ↑### ↓*** ↓*** 4 1.19 L-苏氨酸(L-Threonine) + 102.055 2 C4H9NO3 ↑### ↓*** ↓*** 5 11.32 LysoPE(0∶0/18∶0) + 481.317 6 C23H48NO7P ↑### ↓* ↓*** 6 13.29 SM(d18∶0/18∶0) + 777.589 2 C41H85N2O6P ↑### - - 7 13.31 SM(d18∶1/16∶0) + 703.573 8 C39H79N2O6P ↑### - - 8 13.35 PE(18∶0/14∶0) + 733.547 8 C37H74NO8P ↑### - ↓* 9 13.43 PE-NMe[18∶1(9Z)/18∶1(9Z)] + 757.564 6 C42H80NO8P ↑# ↓* - 10 13.44 SM[d18∶1/18∶1(11Z)] + 729.590 4 C41H81N2O6P ↑### - ↓** 11 13.53 PE[16∶0/20∶3(5Z, 8Z, 11Z)] + 783.568 5 C41H76NO8P ↑### - ↓* 12 14.76 PC[18∶3(9Z, 12Z, 15Z)/P-18∶1(9Z)] + 730.558 1 C44H80NO7P ↑### - ↓** 13 14.76 PC[20∶5(5Z, 8Z, 11Z, 14Z, 17Z)/P-16∶0] + 805.585 8 C44H78NO7P ↑### - ↓* 14 2.76 琥珀酸二钠(Disodium succinate) - 322.976 0 C4H4Na2O4 ↓### ↑*** - 15 8.66 SM[d18∶1/22∶1(13Z)] - 391.317 5 C45H89N2O6P ↑### ↓*** ↓*** 注:CON.空白组;M.模型组;Y.阿司匹林组;LY.羚羊角组;MN1.牦牛角低剂量组;MN2.牦牛角高剂量组; 与空白组比较,#P < 0.05, ###P < 0.001;与模型组比较,*P < 0.05, **P < 0.01, ***P < 0.001。 -
[1] ROTH J, BLATTEIS CM. Mechanisms of fever production and lysis: Lessons from experimental LPS fever[J]. Compr Physiol, 2014, 4(4): 1563-1604. [2] PELLICCIA V, ROSSI S, ZOLLINO I, et al. Adverse drug reactions of acetaminophen and ibuprofen in the paediatric population: Analysis of the Italian spontaneous reporting database[J]. Curr Pediatr Rev, 2022, 18(1): 64-71. doi: 10.2174/1573396317666210909152831 [3] REN WD, WANG WH, GUO YL. Analysis of adverse reactions of aspirin in prophylaxis medication based on FAERS database[J]. Comput Math Methods Med, 2022, 2022: 7882277. [4] 郑云霞. 非甾体类解热镇痛药临床应用分析[J]. 中国处方药, 2017, 15(2): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCF201702037.htmZHENG YX. Analysis of clinical application of nonsteroidal antipyretic analgesics[J]. J China Prescr Drug, 2017, 15(2): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCF201702037.htm [5] 李时珍. 本草纲目: 图文珍藏本[M]. 北京: 中国医药科技出版社, 2016: 2221-2223.LI SZ. The Grand Compendium of Materia Medica: A Collection of Pictures and Texts[M]. Beijing: China medical science press, 2016: 2221-2223. [6] 宋风霜. 牦牛角解热镇静安神[J]. 四川中医, 2007, 25(2): 55. https://www.cnki.com.cn/Article/CJFDTOTAL-SCZY200702027.htmSONG FS. Yak horns are antipyretic, calming and tranquilizing[J]. J Sichuan Tradit Chin Med, 2007, 25(2): 55. https://www.cnki.com.cn/Article/CJFDTOTAL-SCZY200702027.htm [7] 姜正谦. 高原中医学[M]. 拉萨: 西藏人民出版社, 1996: 119, 149-151.JIANG ZQ. Plateau Traditional Chinese Medicine[M]. Lhasa: Tibet people's publishing house, 1996: 119, 149-151. [8] 立新, 奥·乌力吉, 那仁满都拉. 基于血浆代谢组学的蒙药三臣小儿退热贴膏解热作用机制研究[J]. 中草药, 2021, 52(18): 5581-5588. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202118013.htmLI X, AO U, NARENMANDULA H. Antipyretic mechanism of Mongolian medicine Sanchen Xiaoer Antipyretic Plaster based on plasma metabolomics[J]. Chin Tradit Herb Drugs, 2021, 52(18): 5581-5588. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202118013.htm [9] 徐小蓉, 唐进法, 张辉, 等. 青黛对2, 4-二硝基苯酚诱导发热大鼠模型的解热活性及潜在机制研究[J]. 中国中药杂志, 2021, 46(13): 3205-3212. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202113004.htmXU XR, TANG JF, ZHANG H, et al. Antipyretic activity and potential mechanism of Indigo Naturalis on 2, 4-dinitrophenol-induced fever rat model[J]. China J Chin Mater Med, 2021, 46(13): 3205-3212. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202113004.htm [10] GAO X, HUANG CJ, GENG T, et al. Serum and urine metabolomics based on UPLC-Q-TOF/MS reveals the antipyretic mechanism of Reduning injection in a rat model[J]. J Ethnopharmacol, 2020, 250: 112429. doi: 10.1016/j.jep.2019.112429 [11] 武文星, 郭盛, 吴励萍, 等. 免疫应激介导的赤芍缓解补骨脂肝脏毒性作用评价及其调控代谢网络分析[J]. 药学学报, 2021, 56(7): 1789-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXB202107006.htmWU WX, GUO S, WU LP, et al. Paeoniae Rubra Radix decreases the hepatotoxicity of Psoraleae Fructus in an immunologically stressed rat model: A metabolic network analysis[J]. Acta Pharm Sin, 2021, 56(7): 1789-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXB202107006.htm [12] 黄德华, 王力文, 宫文霞, 等. 基于血浆代谢组学和网络分析研究柴归颗粒的抗抑郁作用机制[J]. 药学学报, 2022, 57(5): 1420-1428.HUANG DH, WANG LW, GONG WX, et al. Based on plasma metabonomics and network analysis to research the mechanisms of Chaigui Granules for treating depression[J]. Acta Pharm Sin, 2022, 57(5): 1420-1428. [13] LEUNG KWAN KK, WONG TY, WU QY, et al. Mass spectrometry-based multi-omics analysis reveals the thermogenetic regulation of herbal medicine in rat model of yeast-induced fever[J]. J Ethnopharmacol, 2021, 279: 114382. [14] 杨彪, 胡玉梅, 刘文君, 等. 脂多糖致大鼠发热特点与机制研究进展[J]. 世界科学技术-中医药现代化, 2020, 22(7): 2198-2204. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202007011.htmYANG B, HU YM, LIU WJ, et al. Research of progress of the characteristics and mechanism of fever induced by LPS in rats[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2020, 22(7): 2198-2204. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202007011.htm [15] 颜亮. 体温反应指数应用其自身单位为量纲[J]. 中国病理生理杂志, 1992, 8(1): 107-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBLS199201036.htmYAN L. Body temperature response index should be measured in its own unit[J]. Chin J Pathophysiol, 1992, 8(1): 107-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBLS199201036.htm [16] WU JS, ZHANG ML, CHENG JJ, et al. Effect of Lonicerae japonicae Flos carbonisata-derived carbon dots on rat models of fever and hypothermia induced by lipopolysaccharide[J]. Int J Nanomedicine, 2020, 15: 4139-4149. [17] FRAGA D, ZANONI CIS, ZAMPRONIO AR, et al. Endocannabinoids, through opioids and prostaglandins, contribute to fever induced by key pyrogenic mediators[J]. Brain Behav Immun, 2016, 51: 204-211. [18] HIRSCH J, ASTRAHAN A, ODEH M, et al. Q fever risk in patients treated with chronic antitumor necrosis factor-alpha therapy[J]. Case Rep Infect Dis, 2016, 2016: 4586150. [19] 宋洋洋, 任弋, 季晖, 等. 发热的分子机制研究进展[J]. 药学研究, 2017, 36(2): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYG201702011.htmSONG YY, REN Y, JI H, et al. Research progress on molecular mechanism of fever[J]. J Pharm Res, 2017, 36(2): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYG201702011.htm [20] MOTA CMD, MADDEN CJ. Neural circuits mediating circulating interleukin-1β-evoked fever in the absence of prostaglandin E2 production[J]. Brain Behav Immun, 2022, 103: 109-121. [21] WANG XL, XU YY, SONG X, et al. Analysis of glycerophospholipid metabolism after exposure to PCB153 in PC12 cells through targeted lipidomics by UHPLC-MS/MS[J]. Ecotoxicol Environ Saf, 2019, 169: 120-127. [22] WU TT, CHEN CC, LIN JT, et al. The anti-inflammatory function of adenine occurs through AMPK activation and its downstream transcriptional regulation in THP-1 cells[J]. Biosci Biotechnol Biochem, 2019, 83(12): 2220-2229. [23] CHEN YD, ZHAO C, ZHU XY, et al. Multiple inhibitory effects of succinic acid on Microcystis aeruginosa: Morphology, metabolomics, and gene expression[J]. Environ Technol, 2022, 43(20): 3121-3130. [24] PRAJITHA N, ATHIRA S, MOHANAN P. Pyrogens, a polypeptide produces fever by metabolic changes in hypothalamus: Mechanisms and detections[J]. Immunol Lett, 2018, 204: 38-46. [25] RONG H, ZHANG YL, HAO ML, et al. Effects of dietary hydroxyproline on collagen metabolism, proline 4-hydroxylase activity, and expression of related gene in swim bladder of juvenile Nibea diacanthus[J]. Fish Physiol Biochem, 2019, 45(6): 1779-1790. -