留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

牦牛角对LPS诱导发热大鼠模型的解热活性评价及机制研究

赵晶晶 武文星 朱昭颖 刘睿 宿树兰 郭盛 段金廒

赵晶晶, 武文星, 朱昭颖, 刘睿, 宿树兰, 郭盛, 段金廒. 牦牛角对LPS诱导发热大鼠模型的解热活性评价及机制研究[J]. 南京中医药大学学报, 2022, 38(10): 936-944. doi: 10.14148/j.issn.1672-0482.2022.0936
引用本文: 赵晶晶, 武文星, 朱昭颖, 刘睿, 宿树兰, 郭盛, 段金廒. 牦牛角对LPS诱导发热大鼠模型的解热活性评价及机制研究[J]. 南京中医药大学学报, 2022, 38(10): 936-944. doi: 10.14148/j.issn.1672-0482.2022.0936
ZHAO Jing-jing, WU Wen-xing, ZHU Zhao-ying, LIU Rui, SU Shu-lan, GUO Sheng, DUAN Jin-ao. Evaluation of Antipyretic Activity and Potential Mechanism of Yak Horn on LPS-Induced Fever Rat Model[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(10): 936-944. doi: 10.14148/j.issn.1672-0482.2022.0936
Citation: ZHAO Jing-jing, WU Wen-xing, ZHU Zhao-ying, LIU Rui, SU Shu-lan, GUO Sheng, DUAN Jin-ao. Evaluation of Antipyretic Activity and Potential Mechanism of Yak Horn on LPS-Induced Fever Rat Model[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(10): 936-944. doi: 10.14148/j.issn.1672-0482.2022.0936

牦牛角对LPS诱导发热大鼠模型的解热活性评价及机制研究

doi: 10.14148/j.issn.1672-0482.2022.0936
基金项目: 

国家中医药多学科交叉创新团队(道地药材生态化与资源可持续利用)支持计划 2021

江苏省动物类中药与功能肽国际合作联合实验室 2022

中央本级重大增减支项目 2060302

详细信息
    作者简介:

    赵晶晶,女,硕士研究生,E-mail:j18406564377@126.com

    宿树兰, 教授, 博士生导师。全国优秀博士学位论文提名奖获得者, 入选教育部“新世纪优秀人才”、江苏省“333高层次人才培养工程”第二层次中青年领军人才、江苏省“六大人才高峰”高层次人才、江苏省“双创计划”。在国内外发表学术论文230篇,其中SCI收录60余篇; 作为主编或副主编出版专著5部。获授权专利14项; 获国家科技进步二等奖1项、国家教育部自然科学奖一等奖1项、省级科技进步奖一等奖4项、江苏省教学成果二等奖1项

    通讯作者:

    宿树兰, 女, 教授, 博士生导师,主要从事中药资源化学与中药功效物质及其作用机制研究,E-mail: sushulan@njucm.edu.cn

    段金廒, 男, 教授, 博士生导师,主要从事中药资源化学研究及资源循环利用研究,E-mail: dja@njucm.edu.cn

  • 中图分类号: R285.5

Evaluation of Antipyretic Activity and Potential Mechanism of Yak Horn on LPS-Induced Fever Rat Model

  • 摘要:   目的  基于脂多糖(LPS)诱导发热大鼠模型评价牦牛角解热活性并探讨其作用机制, 以期为牦牛角新资源药材与开发利用提供科学依据。  方法  以大鼠肛温变化值及体温反应指数评价牦牛角解热活性; 采用ELISA试剂盒测定下丘脑中PGE2、cAMP的含量及血清中TNF-α与IL-1β的含量, 并结合超高压液相色谱飞行时间质谱法(UHPLC-Q-TOF-MS)检测发热大鼠血浆中内源性标志物, 探索牦牛角解热机制。  结果  牦牛角给药后1、2、3 h大鼠体温明显下降(P < 0.05), 低剂量组TNF-α及cAMP水平均显著降低(P < 0.01), 高剂量组cAMP水平显著降低(P < 0.01), 牦牛角给药组均能抑制IL-1β与PGE2水平。从空白组与模型组血浆样本中共鉴定出15个潜在差异代谢物, 牦牛角高剂量给药后可显著回调其中11个代谢物, 主要包括磷脂酰乙醇胺、鞘磷脂、腺嘌呤、琥珀酸、L-苏氨酸、4-羟脯氨酸、磷脂酰胆碱、溶血性磷脂酰乙醇胺等, 主要涉及甘油磷脂代谢通路。  结论  牦牛角解热活性确切, 其作用机制可能与抑制内源性致热源与中枢体温正性调节介质释放、调节脂质代谢密切相关。

     

  • 图  1  各组大鼠体温增减值变化曲线图(x±sn=8)

    注:CON.空白组;M.模型组;Y.阿司匹林组;LY.羚羊角组;MN1.牦牛角低剂量组;MN2.牦牛角高剂量组

    Figure  1.  The curve of temperature increase and decrease of rats in each group (x±s, n=8)

    图  2  各组大鼠血清TNF-α、IL-1β水平及下丘脑cAMP、PGE2水平的比较

    注:CON.空白组;M.模型组;Y.阿司匹林组;LY.羚羊角组;MN1.牦牛角低剂量组;MN2.牦牛角高剂量组;与空白组比较,#P < 0.05, ###P < 0.001;与模型组比较,*P < 0.05, **P < 0.01, ***P < 0.001。x±sn=6。

    Figure  2.  The levels of TNF-α and IL-1β in serum, as well as cAMP and PGE2 in hypothalamus of rats in each group

    图  3  正(A~D)、负(E~H)离子模式下UPLC-Q-TOF-MS数据的多元统计分析

    注:QC.质控样本; CON.空白组; M.模型组; A,E.PCA分析得分图; B, F.OPLS-DA图; C, G.OPLS-DA模型置换检验图; D, H.S-plot得分图

    Figure  3.  Multivariate statistical analysis of UPLC-Q-TOF-MS data in positive (A-D) and negative (E-H) ion modes

    图  4  牦牛角调控血浆中11个差异代谢物

    注:CON.空白组;M.模型组;Y.阿司匹林组;LY.羚羊角组;MN1.牦牛角低剂量组;MN2.牦牛角高剂量组; 与空白组相比,#P<0.05,###P<0.001;与模型组相比,*P<0.05,**P<0.01,***P<0.001。x±sn=6。

    Figure  4.  Yak horn regulates 11 differential metabolites in plasma

    图  5  发热相关代谢通路(A)和牦牛角解热相关代谢通路(B)

    Figure  5.  Febrile metabolic pathway (A) and antipyretic metabolic pathway of yak horn (B)

    表  1  各组大鼠肛温变化(x±sn=8)

    Table  1.   Changes of anal temperature in each group (x±s, n=8)

    分组 剂量/ (g·kg-1) 基础体温/ ℃ 不同时间点体温值/℃
    造模后6 h 给药后1 h 给药后2 h 给药后3 h 给药后4 h
    空白组 - 37.19±0.25 36.60±0.28 36.81±0.50 36.99±0.30 37.04±0.27 36.90±0.21
    模型组 - 37.40±0.26 38.79±0.12### 38.84±0.21### 38.74±0.26### 38.68±0.28### 38.34±0.32###
    阿司匹林组 0.08 37.43±0.22 38.64±0.23### 37.88±0.28*** 37.63±0.41*** 37.79±0.35*** 37.83±0.24**
    羚羊角组 0.05 37.50±0.17 38.71±0.27### 38.54±0.28* 38.55±0.33 38.36±0.59* 38.14±0.52*
    牦牛角低剂量组 0.625 37.50±0.38 38.79±0.25### 38.80±0.21 38.49±0.34* 38.44±0.52* 38.30±0.34
    牦牛角高剂量组 1.25 37.37±0.30 38.55±0.32### 38.63±0.22* 38.45±0.30 38.46±0.30 38.14±0.40
    注: 与空白组比较,###P < 0.001;与模型组比较,*P < 0.05, **P < 0.01, ***P < 0.001。
    下载: 导出CSV

    表  2  不同时间监测点下各组体温反应指数变化(x±sn=8)

    Table  2.   Changes of temperature response index in each group at different time points (x±s, n=8)

    分组 剂量/(g·kg-1) TRI6~7 h TRI6~8 h TRI6~9 h TRI6~10 h
    模型组 - 2.83±0.44 5.50±1.05 8.01±1.59 10.23±2.14
    阿司匹林组 0.08 1.65±0.23*** 2.30±0.86*** 2.85±1.58*** 3.60±2.11***
    羚羊角组 0.05 2.24±0.30** 4.32±0.60* 6.22±1.06* 7.72±1.94*
    牦牛角低剂量组 0.625 2.60±0.54 4.89±1.09 6.83±1.61 8.57±1.33
    牦牛角高剂量组 1.25 2.44±0.61* 4.78±1.25 6.96±2.06 8.83±1.01
    注: 与模型组比较,*P < 0.05, **P < 0.01, ***P < 0.001。
    下载: 导出CSV

    表  3  潜在差异代谢物

    Table  3.   Potential differential metabolites

    编号 tR/min 生物标记物 ESI m/z 分子式 含量变化
    M vs CON MN1 vs M MN2 vs M
    1 1.07 琥珀酸(Succinic acid) + 160.060 9 C4H6O4 # *** ***
    2 1.1 4-羟脯氨酸(4-Hydroxyproline) + 132.066 4 C5H9NO3 # *** ***
    3 1.11 腺嘌呤(Adenine) + 293.097 9 C5H5N5 ### *** ***
    4 1.19 L-苏氨酸(L-Threonine) + 102.055 2 C4H9NO3 ### *** ***
    5 11.32 LysoPE(0∶0/18∶0) + 481.317 6 C23H48NO7P ### * ***
    6 13.29 SM(d18∶0/18∶0) + 777.589 2 C41H85N2O6P ### - -
    7 13.31 SM(d18∶1/16∶0) + 703.573 8 C39H79N2O6P ### - -
    8 13.35 PE(18∶0/14∶0) + 733.547 8 C37H74NO8P ### - *
    9 13.43 PE-NMe[18∶1(9Z)/18∶1(9Z)] + 757.564 6 C42H80NO8P # * -
    10 13.44 SM[d18∶1/18∶1(11Z)] + 729.590 4 C41H81N2O6P ### - **
    11 13.53 PE[16∶0/20∶3(5Z, 8Z, 11Z)] + 783.568 5 C41H76NO8P ### - *
    12 14.76 PC[18∶3(9Z, 12Z, 15Z)/P-18∶1(9Z)] + 730.558 1 C44H80NO7P ### - **
    13 14.76 PC[20∶5(5Z, 8Z, 11Z, 14Z, 17Z)/P-16∶0] + 805.585 8 C44H78NO7P ### - *
    14 2.76 琥珀酸二钠(Disodium succinate) - 322.976 0 C4H4Na2O4 ### *** -
    15 8.66 SM[d18∶1/22∶1(13Z)] - 391.317 5 C45H89N2O6P ### *** ***
    注:CON.空白组;M.模型组;Y.阿司匹林组;LY.羚羊角组;MN1.牦牛角低剂量组;MN2.牦牛角高剂量组; 与空白组比较,#P < 0.05, ###P < 0.001;与模型组比较,*P < 0.05, **P < 0.01, ***P < 0.001。
    下载: 导出CSV
  • [1] ROTH J, BLATTEIS CM. Mechanisms of fever production and lysis: Lessons from experimental LPS fever[J]. Compr Physiol, 2014, 4(4): 1563-1604.
    [2] PELLICCIA V, ROSSI S, ZOLLINO I, et al. Adverse drug reactions of acetaminophen and ibuprofen in the paediatric population: Analysis of the Italian spontaneous reporting database[J]. Curr Pediatr Rev, 2022, 18(1): 64-71. doi: 10.2174/1573396317666210909152831
    [3] REN WD, WANG WH, GUO YL. Analysis of adverse reactions of aspirin in prophylaxis medication based on FAERS database[J]. Comput Math Methods Med, 2022, 2022: 7882277.
    [4] 郑云霞. 非甾体类解热镇痛药临床应用分析[J]. 中国处方药, 2017, 15(2): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCF201702037.htm

    ZHENG YX. Analysis of clinical application of nonsteroidal antipyretic analgesics[J]. J China Prescr Drug, 2017, 15(2): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCF201702037.htm
    [5] 李时珍. 本草纲目: 图文珍藏本[M]. 北京: 中国医药科技出版社, 2016: 2221-2223.

    LI SZ. The Grand Compendium of Materia Medica: A Collection of Pictures and Texts[M]. Beijing: China medical science press, 2016: 2221-2223.
    [6] 宋风霜. 牦牛角解热镇静安神[J]. 四川中医, 2007, 25(2): 55. https://www.cnki.com.cn/Article/CJFDTOTAL-SCZY200702027.htm

    SONG FS. Yak horns are antipyretic, calming and tranquilizing[J]. J Sichuan Tradit Chin Med, 2007, 25(2): 55. https://www.cnki.com.cn/Article/CJFDTOTAL-SCZY200702027.htm
    [7] 姜正谦. 高原中医学[M]. 拉萨: 西藏人民出版社, 1996: 119, 149-151.

    JIANG ZQ. Plateau Traditional Chinese Medicine[M]. Lhasa: Tibet people's publishing house, 1996: 119, 149-151.
    [8] 立新, 奥·乌力吉, 那仁满都拉. 基于血浆代谢组学的蒙药三臣小儿退热贴膏解热作用机制研究[J]. 中草药, 2021, 52(18): 5581-5588. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202118013.htm

    LI X, AO U, NARENMANDULA H. Antipyretic mechanism of Mongolian medicine Sanchen Xiaoer Antipyretic Plaster based on plasma metabolomics[J]. Chin Tradit Herb Drugs, 2021, 52(18): 5581-5588. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202118013.htm
    [9] 徐小蓉, 唐进法, 张辉, 等. 青黛对2, 4-二硝基苯酚诱导发热大鼠模型的解热活性及潜在机制研究[J]. 中国中药杂志, 2021, 46(13): 3205-3212. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202113004.htm

    XU XR, TANG JF, ZHANG H, et al. Antipyretic activity and potential mechanism of Indigo Naturalis on 2, 4-dinitrophenol-induced fever rat model[J]. China J Chin Mater Med, 2021, 46(13): 3205-3212. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202113004.htm
    [10] GAO X, HUANG CJ, GENG T, et al. Serum and urine metabolomics based on UPLC-Q-TOF/MS reveals the antipyretic mechanism of Reduning injection in a rat model[J]. J Ethnopharmacol, 2020, 250: 112429. doi: 10.1016/j.jep.2019.112429
    [11] 武文星, 郭盛, 吴励萍, 等. 免疫应激介导的赤芍缓解补骨脂肝脏毒性作用评价及其调控代谢网络分析[J]. 药学学报, 2021, 56(7): 1789-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXB202107006.htm

    WU WX, GUO S, WU LP, et al. Paeoniae Rubra Radix decreases the hepatotoxicity of Psoraleae Fructus in an immunologically stressed rat model: A metabolic network analysis[J]. Acta Pharm Sin, 2021, 56(7): 1789-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXB202107006.htm
    [12] 黄德华, 王力文, 宫文霞, 等. 基于血浆代谢组学和网络分析研究柴归颗粒的抗抑郁作用机制[J]. 药学学报, 2022, 57(5): 1420-1428.

    HUANG DH, WANG LW, GONG WX, et al. Based on plasma metabonomics and network analysis to research the mechanisms of Chaigui Granules for treating depression[J]. Acta Pharm Sin, 2022, 57(5): 1420-1428.
    [13] LEUNG KWAN KK, WONG TY, WU QY, et al. Mass spectrometry-based multi-omics analysis reveals the thermogenetic regulation of herbal medicine in rat model of yeast-induced fever[J]. J Ethnopharmacol, 2021, 279: 114382.
    [14] 杨彪, 胡玉梅, 刘文君, 等. 脂多糖致大鼠发热特点与机制研究进展[J]. 世界科学技术-中医药现代化, 2020, 22(7): 2198-2204. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202007011.htm

    YANG B, HU YM, LIU WJ, et al. Research of progress of the characteristics and mechanism of fever induced by LPS in rats[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2020, 22(7): 2198-2204. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202007011.htm
    [15] 颜亮. 体温反应指数应用其自身单位为量纲[J]. 中国病理生理杂志, 1992, 8(1): 107-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBLS199201036.htm

    YAN L. Body temperature response index should be measured in its own unit[J]. Chin J Pathophysiol, 1992, 8(1): 107-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBLS199201036.htm
    [16] WU JS, ZHANG ML, CHENG JJ, et al. Effect of Lonicerae japonicae Flos carbonisata-derived carbon dots on rat models of fever and hypothermia induced by lipopolysaccharide[J]. Int J Nanomedicine, 2020, 15: 4139-4149.
    [17] FRAGA D, ZANONI CIS, ZAMPRONIO AR, et al. Endocannabinoids, through opioids and prostaglandins, contribute to fever induced by key pyrogenic mediators[J]. Brain Behav Immun, 2016, 51: 204-211.
    [18] HIRSCH J, ASTRAHAN A, ODEH M, et al. Q fever risk in patients treated with chronic antitumor necrosis factor-alpha therapy[J]. Case Rep Infect Dis, 2016, 2016: 4586150.
    [19] 宋洋洋, 任弋, 季晖, 等. 发热的分子机制研究进展[J]. 药学研究, 2017, 36(2): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYG201702011.htm

    SONG YY, REN Y, JI H, et al. Research progress on molecular mechanism of fever[J]. J Pharm Res, 2017, 36(2): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYG201702011.htm
    [20] MOTA CMD, MADDEN CJ. Neural circuits mediating circulating interleukin-1β-evoked fever in the absence of prostaglandin E2 production[J]. Brain Behav Immun, 2022, 103: 109-121.
    [21] WANG XL, XU YY, SONG X, et al. Analysis of glycerophospholipid metabolism after exposure to PCB153 in PC12 cells through targeted lipidomics by UHPLC-MS/MS[J]. Ecotoxicol Environ Saf, 2019, 169: 120-127.
    [22] WU TT, CHEN CC, LIN JT, et al. The anti-inflammatory function of adenine occurs through AMPK activation and its downstream transcriptional regulation in THP-1 cells[J]. Biosci Biotechnol Biochem, 2019, 83(12): 2220-2229.
    [23] CHEN YD, ZHAO C, ZHU XY, et al. Multiple inhibitory effects of succinic acid on Microcystis aeruginosa: Morphology, metabolomics, and gene expression[J]. Environ Technol, 2022, 43(20): 3121-3130.
    [24] PRAJITHA N, ATHIRA S, MOHANAN P. Pyrogens, a polypeptide produces fever by metabolic changes in hypothalamus: Mechanisms and detections[J]. Immunol Lett, 2018, 204: 38-46.
    [25] RONG H, ZHANG YL, HAO ML, et al. Effects of dietary hydroxyproline on collagen metabolism, proline 4-hydroxylase activity, and expression of related gene in swim bladder of juvenile Nibea diacanthus[J]. Fish Physiol Biochem, 2019, 45(6): 1779-1790.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  6
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 网络出版日期:  2022-10-25
  • 发布日期:  2022-10-10

目录

    /

    返回文章
    返回