Research and Prospect of Mussel Active Peptides
-
摘要: 贻贝是我国重要经济贝类, 也是一味海洋中药, 具补肝益肾, 滋阴息风, 养血调经, 益精填髓, 软坚散结, 止血止泻之功效。以贻贝富含的蛋白质、肽类成分的分离纯化、效应机制、新技术新方法应用等研究为切入点, 梳理了近年来发现的贻贝活性肽类成分, 基于现代药理研究与传统功效关联来发现贻贝活性肽类物质。从贻贝资源调查与品质评价, 基于传统中医药理论指导及资源循环利用理念开发贻贝资源、突破贻贝资源综合利用的关键技术、产学研用合作促进贻贝资源综合利用产业化等方面对贻贝资源开发应用提出展望, 为贻贝资源综合利用与产品开发提供思路与参考, 促进贻贝资源的高质量发展。Abstract: Marine traditional Chinese medicine refers to the drugs derived from the ocean for the prevention, treatment and diagnosis of diseases under the guidance of traditional Chinese medicine theory, and is an essential part of traditional Chinese medicine. Mussels are an important economic shellfish in our country, and they are also a kind of marine traditional Chinese medicine, with the effect of nourishing the liver and kidney, nourishing Yin and wind, nourishing blood and regulating menstruation, benefiting essence and filling marrow, softening hardness and dispersing knots, stopping bleeding and diarrhea. In this paper, based on the research on the separation and purification of protein and peptide components rich in mussels, the effect mechanism, the application of new technologies and methods, etc., the active peptide components of mussels discovered in recent years are sorted out, and it is proposed to combine modern pharmacological research with traditional efficacy correlation to discover mussel active peptides. The research will provide an outlook on the development and application of mussel resources in terms of mussel resource investigation and quality evaluation, development of mussel resources based on traditional Chinese medicine theory and resource recycling concept, breakthrough in key technologies for comprehensive utilization of mussel resources, and cooperation between industry, academia, research and application to promote the industrialization of comprehensive utilization of mussel resources, providing ideas and references for comprehensive utilization of mussel resources and product development, and promoting high-quality, green and sustainable development of mussel resources.
-
表 1 贻贝的传统功效
Table 1. The traditional efficacy of mussels
本草著作 作者及年代 功能主治 《本草拾遗》[5] 唐代陈藏器,撰于公元739年 主虚羸劳损, 因产瘦瘠, 血气结积, 腹冷, 肠鸣, 下痢腰疼, 带下。 《日华子本草》[11] 五代韩保昇,撰于公元908—923年 煮熟食之, 能补五脏, 益阳事, 理腰脚气, 消宿食, 除腹中冷气, 痃癖等。 《嘉祐本草》[7] 北宋掌禹锡、林亿、苏颂等编修, 撰于公元1057—1060年 治虚劳伤惫, 精血少者, 及吐血, 妇人带下、漏下,丈夫久痢, 并煮食之。 《本草图经》[12] 宋代苏颂,成书于1061年 补五脏, 益阳事, 消宿食。 《证类本草》[13] 宋代唐慎微,撰于公元1097—1108年 温。补五脏, 理腰脚气, 益阳事, 能消食, 除腹中冷气, 消痃癖气。亦可烧令汁沸出食之。多食令头闷目暗, 可微利即止。北人多不识, 虽形状不典, 而甚益人。又云: 温, 无毒。补虚劳损, 产后血结, 腹内冷痛, 治癥瘕, 腰痛, 润毛发, 崩中带下。烧一顿令饱, 大效。又名壳菜, 常时频烧食即苦, 不宜人。 《本草纲目》[6] 明代李时珍,成书于公元1578年 虚劳伤惫, 精血衰少, 吐血久痢, 肠鸣腰痛。 《本草汇言》[14] 明代倪朱谟撰, 初刊于公元1624年 淡菜, 补虚养肾之药也。蔡心吾曰, 此物本属介类, 原其气味甘美而淡, 性本清凉, 故藏器云, 善治肾虚有热, 及热郁吐血, 痢血便血, 及血郁成瘿, 留结筋脉诸疾。 《本经逢原》[15] 清代张璐, 成书于公元1695年 甘温无毒。淡菜生咸水而味不沾咸, 为消瘿之善药, 兼补阴虚劳伤, 精血衰少, 及妇人带下, 理腰脚气。不宜多食、久食, 令人阳痿不起及脱人发。一切海中苔菜皆然, 不独淡菜也。 《本草从新》[16] 清代吴仪洛, 成书于公元1757年 补阴, 甘咸温, 补五脏, 益阳事, 理腰脚气, 治虚劳伤惫, 精血衰少, 及吐血久痢, 肠鸣腰痛, 妇人带下, 产后瘦瘠, 又能消瘿气。 《得配本草》[17] 清代严西亭,成书于公元1761年 淡菜, 甘, 温。补五脏, 益阳事, 除腹冷, 治带下。产后瘠瘦, 食之而肥。煮汁煎药亦可。 《本草便读》[18] 清代张秉成,成书于公元1887年 味咸,温, 补阴益阳, 治虚劳, 填精养血。……故能入肾益阴, 治精血衰少。 表 2 贻贝中的活性肽类成分
Table 2. The active peptide constituents of mussels
来源 多肽氨基酸结构序列 药理活性 效应/机制 参考文献 蓝贻贝 YPPAK 抗氧化 DPPH自由基清除率(EC50=2.62 mg·mL-1)、羟基自由基清除率(EC50=0.228 mg·mL-1)和超氧化物自由基(EC50=0.072 mg·mL-1) [22] PIISVYWK
FSVVPSPK促成骨、预防骨质疏松 100 μmol·L-1孵育14 d后, 小鼠骨髓间充质干细胞(MBMMSCs)的ALP活性显著增加(324±6)%
100 μmol·L-1孵育14 d后, MBMMSCs的ALP活性显著增加(315±11)%[23] ELEDSLDSER 抗凝 和凝血酶上的氨基酸Gln38和Thr74位点结合 [24] VQQELEDAEERADSAEGSLQK
RMEADIAAMQSDLDDALNGQR
AAFLLGVNSNDLLK抗凝 —
—
—[25] EPTF
FTVN抗氧化 抑制H2O2诱导的HUVEC细胞内ROS的产生, 激活HO-1/Nrf2通路, 减少Cyt C释放、Bax表达, Caspase-3活化, 增加Bcl-2表达, 保护细胞免受氧化应激 [26] Edman降解测定N-端序列EVMAGNLYPG ACE抑制 ACE抑制活性: IC50=19.34 μg·mL-1 [27] PIIVYWK
TTANIEDRR
FSVVPSPK抗氧化 DPPH自由基清除活性IC50=(0.71±0.01) mmol·L-1
DPPH自由基清除活性IC50=(2.33±0.56) mmol·L-1
DPPH自由基清除活性IC50=(1.09±0.03) mmol·L-1[28] 紫贻贝 YPRKDETGAERT 促成骨 调节BMP-2信号通路促进成骨细胞的分化; 促进MC3T3-E1成骨细胞增殖 [29-30] IK
YEGDP
WF
SWISSACE抑制 IC50=(0.77±0.020) mg·mL-1
IC50=(0.19±0.010) mg·mL-1
IC50=(0.40±0.015) mg·mL-1
IC50=(0.32±0.017) mg·mL-1[31] LGKDQVRT 促成骨、预防骨质疏松 Ca2+与LGKDQVRT肽的金属受体螯合, 促进了成骨细胞的增殖、分化和Caco-2细胞对钙的转运、吸收 [32] IEELEEELEAER(PIE) 促成骨 PIE可以1∶1的比例螯合钙并促进钙离子的吸收利用。PIE-CPC(骨用磷酸钙接合剂)材料促进MC3T3-E1成骨细胞的生长、增殖, 并对大肠杆菌有抑制作用 [33] EADIDGDGQVYEEFVAMMTSK 抗凝 与凝血因子FIX、FX和FII相互作用, 并抑制固有FXase对FX的蛋白水解激活和凝血酶原酶复合物形成FIIa [34] IEELEEELEAER
IQLLEEDLER抗氧化 提高抗氧化应激能力, 降低了内源性ROS水平、老化色素的积累以及细胞凋亡, 通过调节daf-2和daf-16的mRNA表达来促进寿命延长 [35] Edman降解测定N-部分序列DCCRKPFRKHCWDCTAGTPYYG YSTRNIFGCTC…
分子量7 533.4 Da抗菌 对粗糙链球菌和枯枝链球菌的生长有抑制作用 [36] SCASRCKGHCRARRCGYYVSVLY-RGRCYCKCLRC(Mytilins B)
SCASRCKSRCRARRCRYYVSVRYGGFCYCRC(Mytilins C)
GCASRCKAKCAGRRCKGWASASFRRRCYCKCFRC(Mytilins D)抗菌 对革兰氏阳性和革兰氏阴性细菌有显著活性 VVTCGSLCKAHCTFRKCGYFMSVLYHGRCYCRCLLC(Mytilins G1) 抗菌 仅对革兰氏阳性菌有活性 [37] SCASRCKGHCRARRCGYYVSVLYRGRCYCKCLRC 抗菌 抑制华丽弧菌LGP32 (MIC 125 mmol·L-1)、鳗弧菌(MIC 2 mmol·L-1)、溶血微球菌和大肠杆菌(MIC 1 mmol·L-1)的体外生长 [38] 厚壳贻贝 Edman降解测定N-端部分序列GVSLLQQFFL 抗炎 可抑制脂多糖刺激的RAW264.7细胞中NO的产生 [39] SLPIGLMIAM 抗氧化 羟基、DPPH、超氧化物和过氧自由基清除活性的IC50分别为0.118、0.154、0.316和0.243 mg·mL-1 [40] AFNIHNRNLL 抗肿瘤 诱导前列腺、乳腺癌和肺癌细胞的细胞死亡 [21] DLY 抗肿瘤 对人前列腺癌DU-145和PC-3细胞有生长抑制作用 [41] Edman降解测定N-端部分序列TVKCGMNGKMPCKHGAFYTDAC-DKNVFYR…
分子量6 297.55 Da抗菌 参与了宿主对细菌感染的免疫反应, 对真菌和革兰氏阳性菌表现出主要的抗菌活性 [42] Edman降解测定N-端部分序列SDHQMAQSACMGLAQDAAYASAI
分子量11 182 Da抗菌 对革兰氏阳性菌和革兰氏阴性菌均有抑菌活性 [43] LVGDEQAVPAVCVP 抗氧化 通过抗脂质过氧化作用清除自由基, 对多不饱和脂肪酸表现出更高的保护活性 [44] TVKCGMNGKMPCKHGAFYTDTCDKNVFYRCVWGRPVKKACGRGLVWNPRGFCDY 抗菌 对2种革兰氏阳性菌, 金黄色葡萄球菌ATCC 25923和枯草芽孢杆菌151-1都有抗菌作用 [45] 翡翠贻贝 EGLLGDVF 抗炎 减少促炎细胞因子、NO和COX-2活化的产生, 并下调LPS刺激的RAW264.7细胞中iNOS和COX-2蛋白的表达 [46] MLKLILVACLVLTLSGSEAAPQRRATCDLFSIFGVGDSACAAHCLVLGHRGGYCNSQSVCICRD 抗菌 准确地上调血细胞中Pv-Def mRNA的表达 [47] -
[1] 赵鹏. "十四五"时期我国海洋经济发展趋势和政策取向[J/OL]. 海洋经济, 2022: 1-8. https://doi.org/10.19426/j.cnki.cn12-1424/p.20220630.001.ZHAO P. The development trend and policy orientation of marine economy in China during the 14th Five-Year Plan Period[J/OL]. Marine Economy, 2022: 1-8. https://doi.org/10.19426/j.cnki.cn12-1424/p.20220630.001. [2] 付先军, 王振国, 王长云, 等. 海洋中药的内涵与外延探讨[J]. 世界科学技术-中医药现代化, 2016, 18(12): 2034-2042.FU XJ, WANG ZG, WANG CY, et al. Connotation and extension discussion of marine traditional Chinese medicine[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2016, 18(12): 2034-2042. [3] 刘睿, 吴皓. 江苏海洋生物医药研究现状与发展机遇的思考[J]. 南京中医药大学学报, 2018, 34(3): 217-221.LIU R, WU H. Thinking on development opportunities and research status of Jiangsu marine biological medicine[J]. J Nanjing Univ Tradit Chin Med, 2018, 34(3): 217-221. [4] 国家中医药管理局《中华本草》编委会. 中华本草-9[M]. 上海: 上海科学技术出版社, 1999.Editorial Board of Chinese Materia Medica, State Administration of Traditional Chinese Medicine. Chinese Materia Medica-9[M]. Shanghai: Shanghai scientific & technical publishers, 1999. [5] 陈藏器. 本草拾遗[M]. 尚志钧, 校注. 合肥: 安徽科学技术出版社, 2004.CHEN CQ. Supplement to The Grand Compendium of Materia Medica[M]. SHANG ZJ, annoted. Hefei: Anhui science & technology press, 2004. [6] 李时珍. 本草纲目[M]. 昆明: 云南人民出版社, 2011.LI SZ. The Grand Compendium of Materia Medica[M]. Kunming: Yunnan people's publishing house, 2011. [7] 掌禹锡. 嘉祐本草[M]. 尚志钧, 辑复. 北京: 中医古籍出版社, 2009.ZHANG YX. Materia Medica during Jiayou Period[M]. SHANG ZJ, annoted. Beijing: Traditional chinese medicine ancient books press, 2009. [8] 刘明坤, 阙华勇, 张国范, 等. 紫贻贝养殖产业的现状、问题与对策[J]. 海洋科学, 2022, 46(3): 135-144.LIU MK, QUE HY, ZHANG GF, et al. The Current standing of the Mediterranean mussel industry, the obstacles posed and its potential restoration[J]. Mar Sci, 2022, 46(3): 135-144. [9] 包炎琳, 段元亮, 杨娜, 等. 嵊泗列岛贻贝养殖区与无人岛潮间带大型海藻群落结构比较[J]. 海洋渔业, 2020, 42(5): 595-607.BAO YL, DUAN YL, YANG N, et al. Comparison of community structure of large seaweed in mussel culture area of Shengsi Islands and intertidal zone of Xiasanhengshan Island[J]. Mar Fish, 2020, 42(5): 595-607. [10] 管华诗, 王曙光. 中华海洋本草: 第5卷[M]. 上海: 上海科学技术出版社, 2009.GUAN HS, WANG SG. Chinese Ocean Materia Medica: Volume 5[M]. Shanghai: Shanghai scientific & technical publishers, 2009. [11] 韩保昇. 日华子本草[M]. 尚志钧, 辑校. 合肥: 安徽科学技术出版社, 2005.HAN BS. Ri Hua-zi's Materia Medica[M]. SHANG ZJ, annoted. Hefei: Anhui science & technology press, 2005. [12] 苏颂. 本草图经[M]. 尚志钧, 辑校. 合肥: 安徽科学技术出版社, 1994.SU S. Map and Record of Materia Medica[M]. SHANG ZJ, annoted. Hefei: Anhui science & technology press, 1994. [13] 唐慎微. 证类本草[M]. 郭君双, 校. 北京: 中国医药科技出版社, 2011.TANG SW. Materia Medica Arranged According to Pattern[M]. GUO JS, annoted. Beijing: China medical science and technology press, 2011. [14] 倪朱谟. 本草汇言[M]. 戴慎, 点校. 上海: 上海科技出版社, 2005.NI ZM. Treasury of Words on the Materia Medica[M]. DAI S, annoted. Shanghai: science & technology press, 2005. [15] 张璐. 本经逢原[M]. 张从明, 校注. 北京: 中医古籍出版社, 2017.ZHANG L. Encountering the Sources of the Classic of Materia Medica[M]. ZHANG CM, annoted. Beijing: Traditional chinese medicine ancient books press, 2017. [16] 吴仪洛. 本草从新[M]. 阎忠涵, 校注. 北京: 中国医药科技出版社, 2016.WU YL. Thoroughly Revised Materia Medica[M]. YAN ZH, annoted. Beijing: China medical science and technology press, 2016. [17] 严洁. 得配本草[M]. 郑金生, 校注. 北京: 人民卫生出版社, 2007.YAN J. Materia Medica of Combinations[M]. ZHENG JS, anntoed. Beijing: People's medical publishing house, 2007. [18] 张秉成. 本草便读[M]. 张效霞, 校. 北京: 学苑出版社, 2010.ZHANG BC. Convenient Reader on Materia Medica[M]. ZHANG XX, annoted. Beijing: Academy press, 2010. [19] XU Z, ZHAO F, CHEN H, et al. Nutritional properties and osteogenic activity of enzymatic hydrolysates of proteins from the blue mussel (Mytilus edulis)[J]. Food Funct, 2019, 10(12): 7745-7754. [20] 于道德, 宁璇璇, 任贵如, 等. 贻贝抗菌肽的研究进展[J]. 海洋科学, 2009, 33(11): 95-99.YU DD, NING XX, REN GR, et al. Research advance of antimicrobial peptides isolated from mussels[J]. Mar Sci, 2009, 33(11): 95-99. [21] KIM EK, JOUNG HJ, KIM YS, et al. Purification of a novel anticancer peptide from enzymatic hydrolysate of Mytilus coruscus[J]. J Microbiol Biotechnol, 2012, 22(10): 1381-1387. [22] WANG B, LI L, CHI CF, et al. Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate[J]. Food Chem, 2013, 138(2/3): 1713-1719. [23] OH Y, AHN CB, CHO WH, et al. Anti-osteoporotic effects of antioxidant peptides PⅡSVYWK and FSVVPSPK from Mytilus edulis on ovariectomized mice[J]. Antioxidants, 2020, 9(9): 866. [24] QIAO ML, TU ML, WANG ZY, et al. Identification and antithrombotic activity of peptides from blue mussel (Mytilus edulis) protein[J]. Int J Mol Sci, 2018, 19(1): 138. [25] QIAO ML, TU ML, CHEN H, et al. Identification and in silico prediction of anticoagulant peptides from the enzymatic hydrolysates of Mytilus edulis proteins[J]. Int J Mol Sci, 2018, 19(7): 2100. [26] SURYANINGTYAS IT, AHN CB, JE JY. Cytoprotective peptides from blue mussel protein hydrolysates: Identification and mechanism investigation in human umbilical vein endothelial cells injury[J]. Mar Drugs, 2021, 19(11): 609. [27] JE JY, PARK PJ, BYUN HG, et al. Angiotensin Ⅰ converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis[J]. Bioresour Technol, 2005, 96(14): 1624-1629. [28] PARK SY, KIM YS, AHN CB, et al. Partial purification and identification of three antioxidant peptides with hepatoprotective effects from blue mussel (Mytilus edulis) hydrolysate by peptic hydrolysis[J]. J Funct Foods, 2016, 20: 88-95. [29] XU Z, FAN FJ, CHEN H, et al. Absorption and transport of a Mytilus edulis -derived peptide with the function of preventing osteoporosis[J]. Food Funct, 2021, 12(5): 2102-2111. [30] XU Z, CHEN H, WANG ZY, et al. Isolation and characterization of peptides from Mytilus edulis with osteogenic activity in mouse MC3T3-E1 preosteoblast cells[J]. J Agric Food Chem, 2019, 67(5): 1572-1584. [31] SUO SK, ZHAO YQ, WANG YM, et al. Seventeen novel angiotensin converting enzyme (ACE) inhibitory peptides from the protein hydrolysate of Mytilus edulis: Isolation, identification, molecular docking study, and protective function on HUVECs[J]. Food Funct, 2022, 13(14): 7831-7846. [32] XU Z, HAN SY, CHEN H, et al. Characterization of chelation and absorption of calcium by a Mytilus edulis derived osteogenic peptide[J]. Front Nutr, 2022, 9: 840638. [33] XU Z, ZHU ZX, CHEN H, et al. Application of a Mytilus edulis -derived promoting calcium absorption peptide in calcium phosphate cements for bone[J]. Biomaterials, 2022, 282: 121390. [34] JUNG WK, KIM SK. Isolation and characterisation of an anticoagulant oligopeptide from blue mussel, Mytilus edulis[J]. Food Chem, 2009, 117(4): 687-692. [35] ZHOU Y, XU QG, ZHOU XH, et al. Stress resistance and lifespan extension of Caenorhabditis elegans enhanced by peptides from mussel (Mytilus edulis) protein hydrolyzate[J]. Food Funct, 2018, 9(6): 3313-3320. [36] CHARLET M, CHERNYSH S, PHILIPPE H, et al. Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis[J]. J Biol Chem, 1996, 271(36): 21808-21813. [37] MITTA G, VANDENBULCKE F, HUBERT F, et al. Involvement of mytilins in mussel antimicrobial defense[J]. J Biol Chem, 2000, 275(17): 12954-12962. [38] ROCH P, YANG YS, TOUBIANA M, et al. NMR structure of mussel mytilin, and antiviral-antibacterial activities of derived synthetic peptides[J]. Dev Comp Immunol, 2008, 32(3): 227-238. [39] KIM EK, KIM YS, HWANG JW, et al. Purification of a novel nitric oxide inhibitory peptide derived from enzymatic hydrolysates of Mytilus coruscus[J]. Fish Shellfish Immunol, 2013, 34(6): 1416-1420. [40] KIM EK, OH HJ, KIM YS, et al. Purification of a novel peptide derived from Mytilus coruscus and in vitro/in vivo evaluation of its bioactive properties[J]. Fish Shellfish Immunol, 2013, 34(5): 1078-1084. [41] 杨永芳, 闫海强, 丁国芳, 等. 贻贝水解物抗肿瘤活性肽的分离纯化[J]. 中国药科大学学报, 2011(3): 272-275.YANG YF, YAN HQ, DING GF, et al. Isolation and purification of an anticancer activity peptide from protein hydrolysate of Mytilus coruscus[J]. J China Pharm Univ, 2011(3): 272-275. [42] LIAO Z, WANG XC, LIU HH, et al. Molecular characterization of a novel antimicrobial peptide from Mytilus coruscus[J]. Fish Shellfish Immunol, 2013, 34(2): 610-616. [43] OH R, LEE MJ, KIM YO, et al. Myticusin-beta, antimicrobial peptide from the marine bivalve, Mytilus coruscus[J]. Fish Shellfish Immunol, 2020, 99: 342-352. [44] JUNG WK, QIAN ZJ, LEE SH, et al. Free radical scavenging activity of a novel antioxidative peptide isolated from in vitro gastrointestinal digests of Mytilus coruscus[J]. J Med Food, 2007, 10(1): 197-202. [45] MENG DM, DAI HX, GAO XF, et al. Expression, purification and initial characterization of a novel recombinant antimicrobial peptide Mytichitin-a in Pichia pastoris[J]. Protein Expr Purif, 2016, 127: 35-43. [46] JOSHI I, NAZEER RA. EGLLGDVF: A novel peptide from green mussel Perna viridis foot exerts stability and anti-inflammatory effects on LPS-stimulated RAW264.7 cells[J]. Protein Pept Lett, 2020, 27(9): 851-859. [47] WANG YT, ZENG ZY, ZHANG XH, et al. Identification and characterization of a novel defensin from Asian green mussel Perna viridis[J]. Fish Shellfish Immunol, 2018, 74: 242-249. [48] 盛乃娟, 王倩, 吴体智, 等. 江苏省吕四港潮间带贝类的蛋白质组分析[J]. 南京中医药大学学报, 2018, 34(3): 222-226.SHENG NJ, WANG Q, WU TZ, et al. Proteomic profiling in shellfish from Lüsi aquaculture in the intertidal zone area of the Jiangsu Province[J]. J Nanjing Univ Tradit Chin Med, 2018, 34(3): 222-226. [49] 杨贵兰, 秦松, 李文军, 等. 海洋生物活性肽的功能、制备技术与作用机制研究进展[J]. 海洋科学, 2021, 45(10): 123-132.YANG GL, QIN S, LI WJ, et al. Function, preparation technology, and mechanism of marine biological active peptides[J]. Mar Sci, 2021, 45(10): 123-132. [50] OH Y, AHN CB, NAM KH, et al. Amino acid composition, antioxidant, and cytoprotective effect of blue mussel (Mytilus edulis) hydrolysate through the inhibition of caspase-3 activation in oxidative stress-mediated endothelial cell injury[J]. Mar Drugs, 2019, 17(2): 135. [51] LIU R, CHENG JM, WU H. Discovery of food-derived dipeptidyl peptidase Ⅳ inhibitory peptides: A review[J]. Int J Mol Sci, 2019, 20(3): 463. [52] 于莹, 宿小杰, 周德庆, 等. 响应面法优化紫贻贝免疫活性肽的制备工艺[J]. 中国海洋药物, 2021, 40(6): 21-29.YU Y, SU XJ, ZHOU DQ, et al. Optimization of preparation technology of immunomodulatory peptides from Mytilus edulis by response surface methodology[J]. Chin J Mar Drugs, 2021, 40(6): 21-29. [53] 阮晓慧, 韩军岐, 张润光, 等. 食源性生物活性肽制备工艺、功能特性及应用研究进展[J]. 食品与发酵工业, 2016, 42(6): 248-253.RUAN XH, HAN JQ, ZHANG RG, et al. Progress in the preparation, functional properties and applications of food-derived bioactive peptides[J]. Food Ferment Ind, 2016, 42(6): 248-253. [54] LIU R, ZHENG WW, LI J, et al. Rapid identification of bioactive peptides with antioxidant activity from the enzymatic hydrolysate of Mactra veneriformis by UHPLC-Q-TOF mass spectrometry[J]. Food Chem, 2015, 167: 484-489. [55] LIU R, ZHU YH, CHEN J, et al. Characterization of ACE inhibitory peptides from Mactra veneriformis hydrolysate by nano-liquid chromatography electrospray ionization mass spectrometry (Nano-LC-ESI-MS) and molecular docking[J]. Mar Drugs, 2014, 12(7): 3917-3928. [56] LIU R, ZHOU L, ZHANG Y, et al. Rapid identification of dipeptidyl peptidase-Ⅳ (DPP-Ⅳ) inhibitory peptides from Ruditapes philippinarum hydrolysate[J]. Molecules, 2017, 22(10): 1714. [57] CASTEL V, ANDRICH O, NETTO FM, et al. Comparison between isoelectric precipitation and ultrafiltration processes to obtain Amaranth mantegazzianus protein concentrates at pilot plant scale[J]. J Food Eng, 2012, 112(4): 288-295. [58] 张艳萍, 戴志远, 张虹. 紫贻贝酶解物中降血压肽的超滤分离[J]. 食品与发酵工业, 2010, 36(9): 46-51.ZHANG YP, DAI ZY, ZHANG H. Ultrafiltration technology of ACE inhibitory peptides derived from Mytilus edulis protein hydrolysate[J]. Food Ferment Ind, 2010, 36(9): 46-51. [59] YANG YZ, BOYSEN RI, CHOWDHURY J, et al. Analysis of peptides and protein digests by reversed phase high performance liquid chromatography-electrospray ionisation mass spectrometry using neutral pH elution conditions[J]. Anal Chimica Acta, 2015, 872: 84-94. [60] BOUDESOCQUE L, FORNI L, MARTINEZ A, et al. Purification of dirucotide, a synthetic 17-aminoacid peptide, by ion exchange centrifugal partition chromatography[J]. J Chromatogr A, 2017, 1513: 78-83. [61] 孙敬敬, 刘慧慧, 周世权, 等. 一种新型贻贝抗菌肽的分离纯化及鉴定[J]. 水生生物学报, 2014, 38(3): 563-570.SUN JJ, LIU HH, ZHOU SQ, et al. A novel antimicrobial peptide identified from mytilus coruscus[J]. Acta Hydrobiol Sin, 2014, 38(3): 563-570. [62] ROBINSON SD, NORTON RS. Conotoxin gene superfamilies[J]. Mar Drugs, 2014, 12(12): 6058-6101. [63] 吴体智, 盛乃娟, 杨丽, 等. 杂色蛤中ACE抑制肽的分离鉴定与分子对接研究[J]. 食品工业科技, 2016, 37(19): 153-156, 161.WU TZ, SHENG NJ, YANG L, et al. Separation and identification of ACE inhibitory peptides from Ruditapes philippinarum and molecular docking[J]. Sci Technol Food Ind, 2016, 37(19): 153-156, 161. [64] 杨晓男, 阮丽君, 江兴, 等. 多肽类药物与中药肽研究展望[J/OL]. 中国中药杂志, 2022: 1-15. https://doi.org/10.19540/j.cnki.cjcmm.20220726.601.YANG XN, LUAN LJ, JIANG X, et al. Overview of research and development of polypeptide drugs and traditional Chinese medicine-peptides: a review[J/OL]. China J Chin Mater Med, 2022: 1-15. https://doi.org/10.19540/j.cnki.cjcmm.20220726.601. [65] REY-CAMPOS M, MOREIRA R, ROMERO A, et al. Transcriptomic analysis reveals the wound healing activity of mussel myticin C[J]. Biomolecules, 2020, 10(1): 133. [66] 周亭屹, 高新昌, 党亚丽, 等. 基于生物信息学技术的生物活性肽研究进展[J]. 食品工业科技, 2019, 40(12): 335-340.ZHOU TY, GAO XC, DANG YL, et al. Research development of the bioactive peptides based on bioinformatics[J]. Sci Technol Food Ind, 2019, 40(12): 335-340. [67] 陈艳楠, 邱智军, 刘学强, 等. 紫贻贝(Mytilus edulis)蛋白计算机模拟消化物活性的生物信息学分析[J]. 食品与发酵工业, 2022, 48(15): 185-192.CHEN YN, QIU ZJ, LIU XQ, et al. Bioinformatics analysis of the bioactivities of in silico digest from Mytilus edulis proteins[J]. Food Ferment Ind, 2022, 48(15): 185-192. [68] 刘睿, 吴皓, 程建明, 等. 江苏沿海低值贝类资源综合利用现状与展望[J]. 南京中医药大学学报, 2015, 31(1): 93-96.LIU R, WU H, CHENG JM, et al. The status and prospect of comprehensive utilization of bivalve derived from Jiangsu coastal area[J]. J Nanjing Univ Tradit Chin Med, 2015, 31(1): 93-96. [69] JI J, HUANG WW, WANG LC, et al. Synthetic iowaite can effectively remove inorganic arsenic from marine extract[J]. Molecules, 2021, 26(10): 3052. [70] 朱敬萍, 张小军, 顾蓓乔, 等. 一种贻贝壳肉分离加工装置: CN105707198A[P]. 2016-06-29.ZHU JP, ZHANG XJ, GU BQ, et al. Washing, cooking and shelling integrated processing device for mussels: CN105707198A[P]. 2016-06-29. -